Solveeit Logo

Question

Question: If \(p={{\tan }^{2}}x+{{\cot }^{2}}x\), then which of the following is correct? [a] \(p\le 2\) [...

If p=tan2x+cot2xp={{\tan }^{2}}x+{{\cot }^{2}}x, then which of the following is correct?
[a] p2p\le 2
[b] p2p\ge 2
[c] p<2p<2
[d] p>2p>2

Explanation

Solution

Hint: Put tanx=t\tan x = t and use the fact that cotx=1tanx\cot x=\dfrac{1}{\tan x}. Hence prove that the given expression is equal to t2+1t2{{t}^{2}}+\dfrac{1}{{{t}^{2}}}. Subtract and add 2 to the expression and use the algebraic identity a2+b22ab=(ab)2{{a}^{2}}+{{b}^{2}}-2ab={{\left( a-b \right)}^{2}}. Hence prove that the given expression is equal to (t1t)2+2{{\left( t-\dfrac{1}{t} \right)}^{2}}+2. Use the fact that xR,x20\forall x\in \mathbb{R},{{x}^{2}}\ge 0. Hence prove that (t1t)2+22{{\left( t-\dfrac{1}{t} \right)}^{2}}+2\ge 2. Hence find the range of p. Alternatively, use AM-GM inequality, i.e. if a0,b0a\ge 0,b\ge 0, then a+b2(ab)12\dfrac{a+b}{2}\ge {{\left( ab \right)}^{\dfrac{1}{2}}}. Hence find the range of p. Alternatively, differentiate both sides and hence find the range of p.

Complete step-by-step answer:
Put tanx = t.
Now, we have
p=tan2x+cot2xp={{\tan }^{2}}x+{{\cot }^{2}}x
We know that cotx=1tanx\cot x=\dfrac{1}{\tan x}
Using the above identity, we get
p=tan2x+1tan2xp={{\tan }^{2}}x+\dfrac{1}{{{\tan }^{2}}x}
Hence, we have
p=t2+1t2p={{t}^{2}}+\dfrac{1}{{{t}^{2}}}
Subtracting and adding 2 on RHS, we get
p=t2+1t22+2p={{t}^{2}}+\dfrac{1}{{{t}^{2}}}-2+2
Now, we know that 2(t)(1t)=22\left( t \right)\left( \dfrac{1}{t} \right)=2
Hence, we have
p=t2+1t22(t)(1t)+2p={{t}^{2}}+\dfrac{1}{{{t}^{2}}}-2\left( t \right)\left( \dfrac{1}{t} \right)+2
We know that a2+b22ab=(ab)2{{a}^{2}}+{{b}^{2}}-2ab={{\left( a-b \right)}^{2}}
Using the above algebraic identity, we get
p=(t1t)2+2p={{\left( t-\dfrac{1}{t} \right)}^{2}}+2
Now, we know that xR,x20\forall x\in \mathbb{R},{{x}^{2}}\ge 0
Hence, we have
tR,(t1t)20\forall t\in \mathbb{R},{{\left( t-\dfrac{1}{t} \right)}^{2}}\ge 0
Adding 2 on both sides, we get
(t1t)2+22{{\left( t-\dfrac{1}{t} \right)}^{2}}+2\ge 2
Hence, we have
p2p\ge 2
Hence option [b] is correct.

Note: Alternative Solution:
We know that if a0,b0a\ge 0,b\ge 0, then the arithmetic mean of a and b is greater or equal to the geometric mean of a and b, i.e. a+b2(ab)12\dfrac{a+b}{2}\ge {{\left( ab \right)}^{\dfrac{1}{2}}}
Put a=tan2x,b=cot2xa={{\tan }^{2}}x,b={{\cot }^{2}}x, we get
tan2x+cot2x2(tan2xcot2x)12\dfrac{{{\tan }^{2}}x+{{\cot }^{2}}x}{2}\ge {{\left( {{\tan }^{2}}x{{\cot }^{2}}x \right)}^{\dfrac{1}{2}}}
We know that cotx=1tanxcotxtanx=1\cot x=\dfrac{1}{\tan x}\Rightarrow \cot x\tan x=1
Hence, we have
tan2x+cot2x21\dfrac{{{\tan }^{2}}x+{{\cot }^{2}}x}{2}\ge 1
Multiplying both sides by 2, we get
tan2x+cot2x2{{\tan }^{2}}x+{{\cot }^{2}}x\ge 2
Hence, we have
p2p\ge 2
Hence option [b] is correct.