Solveeit Logo

Question

Question: If P represents radiation pressure, c represents speed of light and Q represents radiation energy st...

If P represents radiation pressure, c represents speed of light and Q represents radiation energy striking a unit area per second, then non-zero integers x, y and z, such that PxQycz{P^x}{Q^y}{c^z} is dimensionless, may be
(A) x=1, y=1, z=1x = 1,{\text{ }}y = 1,{\text{ }}z = 1
(B) x=1, y=1, z=1x = 1,{\text{ }}y = - 1,{\text{ }}z = 1
(C) x=1, y=1, z=1x = - 1,{\text{ }}y = 1,{\text{ }}z = 1
(D) x=0, y=0, z=0x = 0,{\text{ }}y = 0,{\text{ }}z = 0

Explanation

Solution

It is given that the product of P,Q and c are dimensionless so consider a function whose dimensions are zero so that the bases are the same and now by equating the powers find the values of x, y and z.

Complete step-by-step solution
According to the question,
P is the radiation pressure
P=ForceAreaP = \dfrac{{Force}}{{Area}}
Dimensional formula: [P]=[M1L1T2]\left[ P \right] = \left[ {{M^1}{L^{ - 1}}{T^{ - 2}}} \right]
Q is the radiation energy
Q=EnergyArea×TimeQ = \dfrac{{Energy}}{{Area \times Time}}
Dimensional formula: [Q]=[M1L0T3]\left[ Q \right] = \left[ {{M^1}{L^0}{T^{ - 3}}} \right]
c is the speed of light
Dimensional formula: [c]=[M0L1T1]\left[ c \right] = \left[ {{M^0}{L^1}{T^{ - 1}}} \right]
Let T be a function of product of P, Q and c and k is a dimensionless constant
T=M0L0T0 T=PxQycz M0L0T0=(M1L1T2)x(M1L0T3)y(M0L1T1)z M0L0T0=Mx+yLx+zT2x3yz  T = {M^0}{L^0}{T^0} \\\ T = {P^x}{Q^y}{c^z} \\\ {M^0}{L^0}{T^0} = {({M^1}{L^{ - 1}}{T^{ - 2}})^x}{({M^1}{L^0}{T^{ - 3}})^y}{({M^0}{L^1}{T^{ - 1}})^z} \\\ {M^0}{L^0}{T^0} = {M^{x + y}}{L^{ - x + z}}{T^{ - 2x - 3y - z}} \\\
Now equate the corresponding powers,
x+y=0 \-x+z=0 \-2x3yz=0  x + y = 0 \\\ \- x + z = 0 \\\ \- 2x - 3y - z = 0 \\\
On solving these equations simultaneously, we get the values of x, y and z.
x=1, y=1, z=1x = 1,{\text{ }}y = - 1,{\text{ }}z = 1
P1Q1c1\Rightarrow {P^1}{Q^{ - 1}}{c^1}

Hence the correct option is B.

Note: Dimensional analysis can be used for:
(1) Finding units of physical quantity in a given system.
(2) Finding dimensions of physical constants or coefficients.
(3) Converting physical quantities to other systems.
(4) Checking the correctness of a relation.