Solveeit Logo

Question

Mathematics Question on Determinants

If p,q,rp, q , r are the roots of the equation x12 1x2 12x=0\begin{vmatrix}x&1&2\\\ 1&x&2\\\ 1&2&x\end{vmatrix} = 0 , then p4+q4+r4p2+q2+r2\frac{p^{4} +q^{4}+r^{4}}{p^{2}+q^{2} +r^{2}} is equal to

A

7

B

6

C

44567

D

44568

Answer

7

Explanation

Solution

p,q,rp, q , r the roots of equation ,
x12 1x2 12x=0\begin{vmatrix}x&1&2\\\ 1&x&2\\\ 1&2&x\end{vmatrix} = 0
Operating C1C1+C2+C3C_1 \to C_1 + C_2 + C_3, we get
x+312 x+3x2 x+32x=0\begin{vmatrix}x+3&1&2\\\ x+3&x&2\\\ x+3&2&x\end{vmatrix}=0
(x+3)112 1x2 12x=0\Rightarrow \left(x+3\right) \begin{vmatrix}1&1&2\\\ 1&x&2\\\ 1&2&x\end{vmatrix} = 0
Operating R2R2R1,R3R3R1R_2 \to R_2 - R_1, R_3 \to R_3 - R_1
(x+3)112 0x10 01x2\Rightarrow\left(x+3\right) \begin{vmatrix}1&1&2\\\ 0&x-1&0\\\ 0&1&x-2\end{vmatrix}
Expanding along C1C_1, we get (x+3)[(xl)(x2)0]=0x=1,2,3(x + 3) [(x - l)(x - 2) - 0]= 0 x = 1, 2, - 3 i.e., roots of equation
Let p=1,q=2,r=3 p = 1, q = 2, r = - 3.
p4+q4+r4p2+q2+r2=1+16+811+4+9=9814=7\therefore \frac{p^{4} +q^{4}+r^{4}}{p^{2}+q^{2}+r^{2}} = \frac{1+16+81}{1+4+9} =\frac{98}{14}=7