Question
Mathematics Question on Determinants
If p,q,r are the roots of the equation x 1 11x222x=0 , then p2+q2+r2p4+q4+r4 is equal to
A
7
B
6
C
44567
D
44568
Answer
7
Explanation
Solution
p,q,r the roots of equation ,
x 1 11x222x=0
Operating C1→C1+C2+C3, we get
x+3 x+3 x+31x222x=0
⇒(x+3)1 1 11x222x=0
Operating R2→R2−R1,R3→R3−R1
⇒(x+3)1 0 01x−1120x−2
Expanding along C1, we get (x+3)[(x−l)(x−2)−0]=0x=1,2,−3 i.e., roots of equation
Let p=1,q=2,r=−3.
∴p2+q2+r2p4+q4+r4=1+4+91+16+81=1498=7