Question
Question: If p, q, r are the lengths of the internal bisectors of angles A, B, C of a ∆ABC respectively, then ...
If p, q, r are the lengths of the internal bisectors of angles A, B, C of a ∆ABC respectively, then p1cos2A+ q1cos2B+ r1
cos2C=
A
a1+ b1–c1
B
a1+c1–b1
C
a1+ b1+c1
D
b1+c1–a1
Answer
a1+ b1+c1
Explanation
Solution
∆ =21pc sin2A+ 21pb sin 2A
∆ = 21bc sin A = bc sin2A cos2A
= 21 pc sin2A + 21pb sin2A
∴ p1cos 2A=21 (b1+c1)
∴ ∑p1cos2A =a1+ b1+c1