Solveeit Logo

Question

Question: If p, q, r are positive and are in A.P., the roots of quadratic equation px<sup>2</sup> + qx + r = 0...

If p, q, r are positive and are in A.P., the roots of quadratic equation px2 + qx + r = 0 are all real for:

A

rp7\left| \frac{r}{p} - 7 \right|³ 43\sqrt{3}

B

pr7\left| \frac{p}{r} - 7 \right|³ 43\sqrt{3}

C

All p and r

D

No p and r

Answer

pr7\left| \frac{p}{r} - 7 \right|³ 43\sqrt{3}

Explanation

Solution

Roots are real, so D ³ 0 p, q, r are in A.P.

q2 ³ 4pr So, q =p+r2\frac{p + r}{2}

Ž (p+r2)2\left( \frac{p + r}{2} \right)^{2} ³ 4pr

Ž p2 + r2 + 2pr ³ 16 pr

Ž p2 + r2 –14 pr ³ 0

Ž (pr)2\left( \frac{p}{r} \right)^{2}+ (pr)\left( - \frac{p}{r} \right) (14) + 1 ³ 0

Ž (pr)2\left( \frac{p}{r} \right)^{2}14pr\frac{14p}{r}+ 1 ³ 0

(pr)\left( \frac{p}{r} \right)= 14±(14)242\frac{14 \pm \sqrt{(14)^{2} - 4}}{2}= 7 ± 43\sqrt{3}

Ž Pr\frac{P}{r}£ 7 + 43\sqrt{3}, Pr\frac{P}{r} Ī 7 – 43\sqrt{3}

Ž Pr7\left| \frac{P}{r} - 7 \right|³ 43\sqrt{3}

Hence choice (2) is correct.