Solveeit Logo

Question

Mathematics Question on Matrices

If p,q,rp, q, r are distinct, then the value of pp21+p3 qq21+q3 rr21+r3 \begin{vmatrix} p & p^2 & 1 + p^3 \\\ q & q^2 & 1 + q^3 \\\ r & r^2 & 1 + r^3 \\\ \end{vmatrix} is:

A

(1+pqr)(qp)(rp)(rq)(1 + pqr)(q - p)(r - p)(r - q)

B

(1pqr)(q+p)(r+p)(rq)(1 - pqr)(q + p)(r + p)(r - q)

C

(1+pqr)(qp)(r+p)(rq)(1 + pqr)(q - p)(r + p)(r - q)

D

(1pqr)(q+p)(rp)(r+q)(1 - pqr)(q + p)(r - p)(r + q)

Answer

(1+pqr)(qp)(rp)(rq)(1 + pqr)(q - p)(r - p)(r - q)

Explanation

Solution

To evaluate the determinant, expand and simplify:

The determinant is:

Δ=pp21+p3 qq21+q3 rr21+r3.\Delta = \begin{vmatrix} p & p^2 & 1 + p^3 \\\ q & q^2 & 1 + q^3 \\\ r & r^2 & 1 + r^3 \end{vmatrix}.

Using the property of determinants, subtract the first column from the second and the third column from the first, simplifying the matrix to:

Δ=pp(p1)p3(p1) qq(q1)q3(q1) rr(r1)r3(r1).\Delta = \begin{vmatrix} p & p(p - 1) & p^3(p - 1) \\\ q & q(q - 1) & q^3(q - 1) \\\ r & r(r - 1) & r^3(r - 1) \end{vmatrix}.

Factor out p1p - 1, q1q - 1, and r1r - 1 from the columns:

Δ=(p1)(q1)(r1)pp21 qq21 rr21.\Delta = (p - 1)(q - 1)(r - 1) \begin{vmatrix} p & p^2 & 1 \\\ q & q^2 & 1 \\\ r & r^2 & 1 \end{vmatrix}.

The remaining determinant simplifies using standard properties of symmetric determinants:

pp21 qq21 rr21=(qp)(rp)(rq).\begin{vmatrix} p & p^2 & 1 \\\ q & q^2 & 1 \\\ r & r^2 & 1 \end{vmatrix} = (q - p)(r - p)(r - q).

Thus, the overall value of the determinant becomes:

Δ=(1+pqr)(qp)(rp)(rq).\Delta = (1 + pqr)(q - p)(r - p)(r - q).

Hence, the correct answer is (1+pqr)(qp)(rp)(rq)(1 + pqr)(q - p)(r - p)(r - q).