Solveeit Logo

Question

Mathematics Question on Matrices

If p, q, r are 3 real numbers satisfying the matrix equation , [p q r][341 323 202]=[301][ p \ q \ r ] \begin{bmatrix}3&4&1\\\ 3&2&3\\\ 2&0&2\end{bmatrix} = \begin{bmatrix}3&0&1\end{bmatrix} then 2p + q - r equals :

A

-3

B

-1

C

4

D

2

Answer

-3

Explanation

Solution

Given [pqr][341 323 202]=[301]\begin{bmatrix}p&q&r\end{bmatrix} \begin{bmatrix}3&4&1\\\ 3&2&3\\\ 2&0&2\end{bmatrix} = \begin{bmatrix}3&0&1\end{bmatrix} [3p+3q+2r4p+2qp+3q+2r]=[301] \Rightarrow \begin{bmatrix}3p + 3q + 2r&4p + 2q&p + 3q + 2r\end{bmatrix} = \begin{bmatrix}3&0&1\end{bmatrix}  3p+3q+2r=3\Rightarrow \ 3p + 3q + 2r = 3 ...(i) 4p+2q=0  q=2p4p + 2q = 0 \ \Rightarrow \ q = - 2p ...(ii) p+3q+2r=1p + 3q + 2r = 1 ...(iii) On solving (i), (ii) and (iii), we get p = 1, q = - 2, r = 3 \therefore 2p + q - r = 2(1) + (- 2) - (3) = - 3.