Solveeit Logo

Question

Question: If p, q be non-zero real numbers and f(x) ≠ 0 for ∀ x ∈ [0,2] and \(\int_{0}^{1}{f(x).(x^{2} + px ...

If p, q be non-zero real numbers and f(x) ≠ 0 for

∀ x ∈ [0,2] and

01f(x).(x2+px+q)dx\int_{0}^{1}{f(x).(x^{2} + px + q)dx} = 02f(x).(x2+px+q)dx\int_{0}^{2}{f(x).(x^{2} + px + q)dx}=0

Then equation x2 + px + q = 0 has

A

Two imaginary roots

B

No root in (0, 2)

C

One root in (0, 1) and other in (1, 2)

D

One root in (–∞, 0) and other in (2, ∞)

Answer

One root in (0, 1) and other in (1, 2)

Explanation

Solution

Since f(x) ≠ 0 then x2 + px + q = 0 for some

x ∈ (0,1)

also 12f(x)(x2+px+q)dx\int_{1}^{2}{f(x)(x^{2} + px + q)dx} = 0