Solveeit Logo

Question

Question: If p + q = 1 then show that \(\sum\nolimits_{r=0}^{n}{{{r}^{2}}{{c}_{r}}{{p}^{r}}.{{q}^{n-r}}=npq+{{...

If p + q = 1 then show that r=0nr2crpr.qnr=npq+n2p2\sum\nolimits_{r=0}^{n}{{{r}^{2}}{{c}_{r}}{{p}^{r}}.{{q}^{n-r}}=npq+{{n}^{2}}{{p}^{2}}}.

Explanation

Solution

Hint: Use the formula (1+x)n=r=0nnCrxr{{\left( 1+x \right)}^{n}}=\sum\limits_{r=0}^{n}{{}^{n}{{C}_{r}}{{x}^{r}}} and try differentiating it successively. Then multiply with the ‘x’ term and simplify it to get the desired result.

In the question we have to consider the following equation,
(1+x)n=r=0nnCrxr..............(i){{\left( 1+x \right)}^{n}}=\sum\limits_{r=0}^{n}{{}^{n}{{C}_{r}}{{x}^{r}}}..............\left( i \right)
Now, let’s differentiate equation (i) with respect to ‘x’, we will get,
n(1+x)n1=r=0nrnCrxr1n{{\left( 1+x \right)}^{n-1}}=\sum\limits_{r=0}^{n}{r{}^{n}{{C}_{r}}{{x}^{r-1}}}
Now multiply by ‘x’ on both sides, we will get,
nx(1+x)n1=r=0nrnCrxr..............(ii)nx{{\left( 1+x \right)}^{n-1}}=\sum\limits_{r=0}^{n}{r{}^{n}{{C}_{r}}{{x}^{r}}}..............\left( ii \right)
Now, let’s differentiate equation (ii) with respect to ‘x’ and using product rule of differentiation, i.e., ddx(uv)=uddxv+vddxu\dfrac{d}{dx}\left( u\cdot v \right)=u\dfrac{d}{dx}v+v\dfrac{d}{dx}u, we get
n(1+x)n1+n(n1)x(1+x)n2=r=0nr2nCrxr1n{{\left( 1+x \right)}^{n-1}}+n\left( n-1 \right)x{{\left( 1+x \right)}^{n-2}}=\sum\limits_{r=0}^{n}{{{r}^{2}}{}^{n}{{C}_{r}}{{x}^{r-1}}}
Now multiply by ‘x’ both sides, we will get,
nx(1+x)n1+n(n1)x2(1+x)n2=r=0nr2nCrxr.........(iii)nx{{\left( 1+x \right)}^{n-1}}+n\left( n-1 \right){{x}^{2}}{{\left( 1+x \right)}^{n-2}}=\sum\limits_{r=0}^{n}{{{r}^{2}}{}^{n}{{C}_{r}}{{x}^{r}}}.........\left( iii \right)
Now, in the equation (iii) we will substitute ‘x’ by (pq)\left( \dfrac{p}{q} \right), so we get,
n(pq)(1+pq)n1+n(n1)(pq)2(1+pq)n2=r=0nr2nCr(pq)r n(pq)(p+qq)n1+n(n1)(p2q2)(p+qq)n2=r=0nr2nCr(pq)r \begin{aligned} & n\left( \dfrac{p}{q} \right){{\left( 1+\dfrac{p}{q} \right)}^{n-1}}+n\left( n-1 \right){{\left( \dfrac{p}{q} \right)}^{2}}{{\left( 1+\dfrac{p}{q} \right)}^{n-2}}=\sum\limits_{r=0}^{n}{{{r}^{2}}{}^{n}{{C}_{r}}}{{\left( \dfrac{p}{q} \right)}^{r}} \\\ & \Rightarrow n\left( \dfrac{p}{q} \right){{\left( \dfrac{p+q}{q} \right)}^{n-1}}+n\left( n-1 \right)\left( \dfrac{{{p}^{2}}}{{{q}^{2}}} \right){{\left( \dfrac{p+q}{q} \right)}^{n-2}}=\sum\limits_{r=0}^{n}{{{r}^{2}}{}^{n}{{C}_{r}}}{{\left( \dfrac{p}{q} \right)}^{r}} \\\ \end{aligned}
In the question we were given that ‘p + q = 1’, so substituting this in above equation, we get
n(pq)(1q)n1+n(n1)(p2q2)(1q)n2=r=0nr2nCr(pq)rn\left( \dfrac{p}{q} \right){{\left( \dfrac{1}{q} \right)}^{n-1}}+n\left( n-1 \right)\left( \dfrac{{{p}^{2}}}{{{q}^{2}}} \right){{\left( \dfrac{1}{q} \right)}^{n-2}}=\sum\limits_{r=0}^{n}{{{r}^{2}}{}^{n}{{C}_{r}}}{{\left( \dfrac{p}{q} \right)}^{r}}
Combining the like terms, we get
npqn+n(n1)p2qn=r=0nr2nCr(pq)r\Rightarrow n\dfrac{p}{{{q}^{n}}}+\dfrac{n\left( n-1 \right){{p}^{2}}}{{{q}^{n}}}=\sum\limits_{r=0}^{n}{{{r}^{2}}{}^{n}{{C}_{r}}}{{\left( \dfrac{p}{q} \right)}^{r}}
Now, multiplying qn{{q}^{n}}on both side of the above equation we get,
np+n(n1)p2=r=0nr2nCrprqnrnp+n\left( n-1 \right){{p}^{2}}=\sum\limits_{r=0}^{n}{{{r}^{2}}{}^{n}{{C}_{r}}}{{p}^{r}}{{q}^{n-r}}
We can also write like this
r=0nr2nCrprqnr=np+n(n1)p2\sum\limits_{r=0}^{n}{{{r}^{2}}{}^{n}{{C}_{r}}}{{p}^{r}}{{q}^{n-r}}=np+n\left( n-1 \right){{p}^{2}}
Combining the like terms, we get
r=0nr2nCrprqnr=np(1+npp)\sum\limits_{r=0}^{n}{{{r}^{2}}{}^{n}{{C}_{r}}}{{p}^{r}}{{q}^{n-r}}=np\left( 1+np-p \right)
We were given that ‘p + q = 1’, so, we can replace (1p)\left( 1-p \right) by qq, the above equation can be written as,
r=0nr2nCrprqnr=np(q+np)\sum\limits_{r=0}^{n}{{{r}^{2}}{}^{n}{{C}_{r}}}{{p}^{r}}{{q}^{n-r}}=np\left( q+np \right)
Opening the bracket,w e get
r=0nr2nCrprqnr=npq+n2p2\sum\limits_{r=0}^{n}{{{r}^{2}}{}^{n}{{C}_{r}}}{{p}^{r}}{{q}^{n-r}}=npq+{{n}^{2}}{{p}^{2}}
Hence Proved

Note: In these type of questions, student generally go wrong while differentiating;
(1+x)n=r=0nnCrxr{{\left( 1+x \right)}^{n}}=\sum\limits_{r=0}^{n}{{}^{n}{{C}_{r}}{{x}^{r}}}with respect to xx.
Another approach of this problem is
r=0nr2crpr.qnr\sum\nolimits_{r=0}^{n}{{{r}^{2}}{{c}_{r}}{{p}^{r}}.{{q}^{n-r}}}
And convert this to the formula, (1+x)n=r=0nnCrxr{{\left( 1+x \right)}^{n}}=\sum\limits_{r=0}^{n}{{}^{n}{{C}_{r}}{{x}^{r}}}
In this way we can prove LHS is equal to RHS.