Solveeit Logo

Question

Question: If \[p=\overset{\hat{\ }}{\mathop{i}}\,+\overset{\hat{\ }}{\mathop{j}}\,,q=4\overset{\hat{\ }}{\math...

If p=i ^+j ^,q=4k ^j ^ and r=i ^+k ^p=\overset{\hat{\ }}{\mathop{i}}\,+\overset{\hat{\ }}{\mathop{j}}\,,q=4\overset{\hat{\ }}{\mathop{k}}\,-\overset{\hat{\ }}{\mathop{j}}\,\ and\ r=\overset{\hat{\ }}{\mathop{i}}\,+\overset{\hat{\ }}{\mathop{k}}\,, then the unit vector in the direction of 3p+q2r3p+q-2r is,
A. 13(i ^+2j ^+2k ^)\dfrac{1}{3}\left( \overset{\hat{\ }}{\mathop{i}}\,+2\overset{\hat{\ }}{\mathop{j}}\,+2\overset{\hat{\ }}{\mathop{k}}\, \right)
B. 13(i ^2j ^2k ^)\dfrac{1}{3}\left( \overset{\hat{\ }}{\mathop{i}}\,-2\overset{\hat{\ }}{\mathop{j}}\,-2\overset{\hat{\ }}{\mathop{k}}\, \right)
C. 13(i ^2j ^+2k ^)\dfrac{1}{3}\left( \overset{\hat{\ }}{\mathop{i}}\,-2\overset{\hat{\ }}{\mathop{j}}\,+2\overset{\hat{\ }}{\mathop{k}}\, \right)
D. i ^2j ^+2k ^\overset{\hat{\ }}{\mathop{i}}\,-2\overset{\hat{\ }}{\mathop{j}}\,+2\overset{\hat{\ }}{\mathop{k}}\,

Explanation

Solution

Hint: We will be using the concept of vector to solve the problem. We will using the concept that a unit vector in direction of a vector a is aa\overrightarrow{a}\ is\ \dfrac{\overrightarrow{a}}{\left| \overrightarrow{a} \right|} where a\left| \overrightarrow{a} \right| is the magnitude of the vector.

Complete step-by-step answer:
Now, we have been given that,

& p=\overset{\hat{\ }}{\mathop{i}}\,+\overset{\hat{\ }}{\mathop{j}}\,...........\left( 1 \right) \\\ & q=4\overset{\hat{\ }}{\mathop{k}}\,-\overset{\hat{\ }}{\mathop{j}}\,\ .........\left( 2 \right) \\\ & r=\overset{\hat{\ }}{\mathop{i}}\,+\overset{\hat{\ }}{\mathop{k}}\,............\left( 3 \right) \\\ \end{aligned}$$ We have to find a unit vector in the direction of $3p+q-2r$. So, we have using (1), (2) and (3). $\begin{aligned} & 3p+q-2r=3\left( \overset{\hat{\ }}{\mathop{i}}\,+\overset{\hat{\ }}{\mathop{j}}\, \right)+4\overset{\hat{\ }}{\mathop{k}}\,-\overset{\hat{\ }}{\mathop{j}}\,-2\left( \overset{\hat{\ }}{\mathop{i}}\,+\overset{\hat{\ }}{\mathop{k}}\, \right) \\\ & =3\overset{\hat{\ }}{\mathop{i}}\,+3\overset{\hat{\ }}{\mathop{j}}\,+4\overset{\hat{\ }}{\mathop{k}}\,-\overset{\hat{\ }}{\mathop{j}}\,-2\overset{\hat{\ }}{\mathop{i}}\,-2\overset{\hat{\ }}{\mathop{k}}\, \\\ & =\overset{\hat{\ }}{\mathop{i}}\,+2\overset{\hat{\ }}{\mathop{j}}\,+2\overset{\hat{\ }}{\mathop{k}}\, \\\ & =\left( \overset{\hat{\ }}{\mathop{i}}\,+2\overset{\hat{\ }}{\mathop{j}}\,+2\overset{\hat{\ }}{\mathop{k}}\, \right) \\\ \end{aligned}$ Now, we have to find $\left| 3p+q-2r \right|$. We know, $\left| a\overset{\hat{\ }}{\mathop{i}}\,+b\overset{\hat{\ }}{\mathop{j}}\,+c\overset{\hat{\ }}{\mathop{k}}\, \right|=\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}$ So, we have, $\begin{aligned} & \left| \overset{\hat{\ }}{\mathop{i}}\,+2\overset{\hat{\ }}{\mathop{j}}\,+2\overset{\hat{\ }}{\mathop{k}}\, \right|=\sqrt{1+4+4} \\\ & =\sqrt{9} \\\ & =3 \\\ \end{aligned}$ Now, we know that unit vector along the direction of a vector $\overrightarrow{a}\ is\ \dfrac{\overrightarrow{a}}{\left| \overrightarrow{a} \right|}$. So, we have unit vector along $3p+q-2r$ as, $\begin{aligned} & \dfrac{\left( \overset{\hat{\ }}{\mathop{i}}\,+2\overset{\hat{\ }}{\mathop{j}}\,+2\overset{\hat{\ }}{\mathop{k}}\, \right)}{3} \\\ & =\dfrac{1}{3}\left( \overset{\hat{\ }}{\mathop{i}}\,+2\overset{\hat{\ }}{\mathop{j}}\,+2\overset{\hat{\ }}{\mathop{k}}\, \right) \\\ \end{aligned}$ Hence, the correct option is (A). Note: To solve these type of questions it is important to note that a unit vector along a vector $\overrightarrow{a}\ is\ \dfrac{\overrightarrow{a}}{\left| \overrightarrow{a} \right|}$. Also to find the magnitude of vector $\left| x\overset{\hat{\ }}{\mathop{i}}\,+y\overset{\hat{\ }}{\mathop{j}}\,+z\overset{\hat{\ }}{\mathop{k}}\, \right|=\sqrt{{{x}^{2}}+{{y}^{2}}+{{z}^{2}}}$.