Solveeit Logo

Question

Question: If P =\(\lim_{n \rightarrow \infty}\) (ea<sup>2</sup>.e<sup>3</sup>a<sup>4</sup>…..e<sup>n–1</sup>a<...

If P =limn\lim_{n \rightarrow \infty} (ea2.e3a4…..en–1an)1/(n2+1)1/(n^{2} + 1), then P4 equals

A

ea2

B

e2a2

C

ea

D

e2a

Answer

ea

Explanation

Solution

P = limn\lim _ { n \rightarrow \infty } (e1+3+…..n/2 terms a2+4+…..n/2 terms)

= limn\lim _ { n \rightarrow \infty } (en/4 (1+ n–1) an/4(2 + n)) 1/(n2+1)1 / \left( n ^ { 2 } + 1 \right)

= limn\lim _ { n \rightarrow \infty } en24(n2+1)a2n+n24(n2+1)e ^ { \frac { n ^ { 2 } } { 4 \left( n ^ { 2 } + 1 \right) } } a ^ { \frac { 2 n + n ^ { 2 } } { 4 \left( n ^ { 2 } + 1 \right) } } = e1/4 . a1/4 ⇒ P4 = e.a