Question
Question: If \(P = \left[ {\begin{array}{*{20}{c}} {\dfrac{{\sqrt 3 }}{2}}&{\dfrac{1}{2}} \\\ { - \df...
If P = \left[ {\begin{array}{*{20}{c}}
{\dfrac{{\sqrt 3 }}{2}}&{\dfrac{1}{2}} \\\
{ - \dfrac{1}{2}}&{\dfrac{{\sqrt 3 }}{2}}
\end{array}} \right],A = \left[ {\begin{array}{*{20}{c}}
1&1 \\\
0&1
\end{array}} \right] and Q=PAPT, then find PTQ2015P
(A) \left[ {\begin{array}{*{20}{c}}
0&{2015} \\\
0&0
\end{array}} \right]
(B) \left[ {\begin{array}{*{20}{c}}
{2015}&0 \\\
1&{2015}
\end{array}} \right]
(C) \left[ {\begin{array}{*{20}{c}}
{2015}&1 \\\
0&{2015}
\end{array}} \right]
(D) \left[ {\begin{array}{*{20}{c}}
1&{2015} \\\
0&1
\end{array}} \right]
Solution
Firstly, multiply the matrix P and transpose of P together. Then using that and the value of matrix Q, transform the given expression into a simpler form. Multiply matrix A with itself to figure out the pattern in the higher power.
Complete step-by-step answer:
In the question, two matrices P and A are given and matrix Q is defined as Q=PAPT, i.e. it is a multiplication of matrix P, A and transpose of matrix P. With all these information, we need to find the value of PTQ2015P.
Let’s go step by step and first solve the transpose of P. In linear algebra, the transpose of a matrix is an operator which flips a matrix over its diagonal; that is, it switches the row and column indices of the matrix by producing another matrix.
P = \left[ {\begin{array}{*{20}{c}}
{\dfrac{{\sqrt 3 }}{2}}&{\dfrac{1}{2}} \\\
{ - \dfrac{1}{2}}&{\dfrac{{\sqrt 3 }}{2}}
\end{array}} \right] \Rightarrow {P^T} = \left[ {\begin{array}{*{20}{c}}
{\dfrac{{\sqrt 3 }}{2}}&{ - \dfrac{1}{2}} \\\
{\dfrac{1}{2}}&{\dfrac{{\sqrt 3 }}{2}}
\end{array}} \right]
Let’s multiply these two matrices
\Rightarrow {P^T}P = \left[ {\begin{array}{*{20}{c}}
{\dfrac{{\sqrt 3 }}{2}}&{ - \dfrac{1}{2}} \\\
{\dfrac{1}{2}}&{\dfrac{{\sqrt 3 }}{2}}
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
{\dfrac{{\sqrt 3 }}{2}}&{\dfrac{1}{2}} \\\
{ - \dfrac{1}{2}}&{\dfrac{{\sqrt 3 }}{2}}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{\dfrac{{3 - 1}}{2}}&0 \\\
0&{\dfrac{{3 - 1}}{2}}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
1&0 \\\
0&1
\end{array}} \right] = I
Therefore, we got the product of matrix P and its transpose as an identity matrix.
We also have Q=PAPT, let’s substitute it into the expression for which we need to find the value.
PTQ2015P=PT(PAPT)2005P=PT(PAPT)(PAPT)(PAPT).....(PAPT)P
But this can be rewritten similarly, but this time it will be more useful to us:
⇒PTQ2015P=(PTP)A(PTP)A(PTP)A.........(PTP)A(PTP)
But, we already calculated that PTP=I which gives us:
⇒PTQ2015P=(PTP)A(PTP)A(PTP)A.........(PTP)A(PTP)=IA2005=A2005
Now, we just got to evaluate A2005and we already have the value A = \left[ {\begin{array}{*{20}{c}}
1&1 \\\
0&1
\end{array}} \right].