Solveeit Logo

Question

Question: If \( P\left( A \right) = P\left( B \right) = x \) and \( P\left( {A \cap B} \right) = P\left( {A' \...

If P(A)=P(B)=xP\left( A \right) = P\left( B \right) = x and P(AB)=P(AB)=13P\left( {A \cap B} \right) = P\left( {A' \cap B'} \right) = \dfrac{1}{3} , then xx is equal to

  1. 12\dfrac{1}{2}
  2. 13\dfrac{1}{3}
  3. 14\dfrac{1}{4}
  4. 16\dfrac{1}{6}
Explanation

Solution

Hint : First we have to find P(AB)P\left( {A \cup B} \right) . So, we will use the property that, P(AB)=P(AB)P\left( {A' \cap B'} \right) = P{\left( {A \cup B} \right)^\prime } . Then from this we can find easily P(AB)P\left( {A \cup B} \right) , as P(AB)=1P(AB)P{\left( {A \cup B} \right)^\prime } = 1 - P\left( {A \cup B} \right) . Then to find the value of xx , we will use the formula,
P(AB)=P(A)+P(B)P(AB)P\left( {A \cup B} \right) = P\left( A \right) + P\left( B \right) - P\left( {A \cap B} \right) .
Substituting the values, we will get our required answer.

Complete step-by-step answer :
Given, P(A)=P(B)=xP\left( A \right) = P\left( B \right) = x and P(AB)=P(AB)=13P\left( {A \cap B} \right) = P\left( {A' \cap B'} \right) = \dfrac{1}{3} .
Now, we know, we can write,
P(AB)=P(AB)P\left( {A' \cap B'} \right) = P{\left( {A \cup B} \right)^\prime }
So, P(AB)=P(AB)=13P\left( {A' \cap B'} \right) = P{\left( {A \cup B} \right)^\prime } = \dfrac{1}{3}
Also, we know, P(AB)=1P(AB)P{\left( {A \cup B} \right)^\prime } = 1 - P\left( {A \cup B} \right)
Now, substituting the values, we get,
13=1P(AB)\dfrac{1}{3} = 1 - P\left( {A \cup B} \right)
Subtracting both sides by 11 , gives us,
131=P(AB)\Rightarrow \dfrac{1}{3} - 1 = - P\left( {A \cup B} \right)
23=P(AB)\Rightarrow - \dfrac{2}{3} = - P\left( {A \cup B} \right)
Multiplying both sides by 1- 1 , we get,
P(AB)=23\Rightarrow P\left( {A \cup B} \right) = \dfrac{2}{3}
Now, we know, P(AB)=P(A)+P(B)P(AB)P\left( {A \cup B} \right) = P\left( A \right) + P\left( B \right) - P\left( {A \cap B} \right) .
So, substituting all the values in the formula we get,
23=x+x13\Rightarrow \dfrac{2}{3} = x + x - \dfrac{1}{3}
Simplifying, we get,
23=2x13\Rightarrow \dfrac{2}{3} = 2x - \dfrac{1}{3}
Now, adding 13\dfrac{1}{3} on both sides of the equation, we get,
23+13=2x\Rightarrow \dfrac{2}{3} + \dfrac{1}{3} = 2x
1=2x\Rightarrow 1 = 2x
Now, dividing both sides by 22 , we get,
12=x\Rightarrow \dfrac{1}{2} = x
Changing the sides,
x=12\Rightarrow x = \dfrac{1}{2}
Therefore, the correct answer is 1.
So, the correct answer is “Option 1”.

Note : The formula finally used is for if two events occurred together simultaneously. If three events would have occurred simultaneously, then the formula to use would have been
P(ABC)=P(A)+P(B)+P(C)P(AB)P(BC)P(AC)+P(ABC)P\left( {A \cup B \cup C} \right) = P\left( A \right) + P\left( B \right) + P\left( C \right) - P\left( {A \cap B} \right) - P\left( {B \cap C} \right) - P\left( {A \cap C} \right) + P\left( {A \cap B \cap C} \right)