Solveeit Logo

Question

Question: If \[p = \left[ {2\sin \theta /\left( {1 + \cos \theta + \sin \theta } \right)} \right]\] and \[q = ...

If p=[2sinθ/(1+cosθ+sinθ)]p = \left[ {2\sin \theta /\left( {1 + \cos \theta + \sin \theta } \right)} \right] and q=[cosθ(1+sinθ)]q = \left[ {\cos \theta \left( {1 + \sin \theta } \right)} \right], then
A. pq=1pq = 1
B. q/p=1q/p = 1
C. qp=1q - p = 1
D. q+p=1q + p = 1

Explanation

Solution

In order to Simplify the values of pp and qq separately. Here the values are in fraction, thus we can use rationalization. After simplification check with the options listed, which one is correct. Since there are trigonometric functions, remember the value: sin2θ+cos2θ=1{\sin ^2}\theta + {\cos ^2}\theta = 1.

Complete step by step answer:
Given, p=2sinθ1+cosθ+sinθp = \dfrac{{2\sin \theta }}{{1 + \cos \theta + \sin \theta }} and q=cosθ1+sinθq = \dfrac{{\cos \theta }}{{1 + \sin \theta }}.
Let simplify pp,
p=2sinθ1+cosθ+sinθp = \dfrac{{2\sin \theta }}{{1 + \cos \theta + \sin \theta }}
Here in denominator, numeral and trigonometric functions are present to rationalize, let introduce a bracket to separate numeral and trigonometric functions.
p=2sinθ1+(cosθ+sinθ)p = \dfrac{{2\sin \theta }}{{1 + (\cos \theta + \sin \theta )}}
Now rationalize,
p=2sinθ1+(cosθ+sinθ)×1(cosθ+sinθ)1(cosθ+sinθ)p= \dfrac{{2\sin \theta }}{{1 + (\cos \theta + \sin \theta )}} \times \dfrac{{1 - (\cos \theta + \sin \theta )}}{{1 - (\cos \theta + \sin \theta )}}
p=2sinθ(1(cosθ+sinθ))(1+(cosθ+sinθ))(1(cosθ+sinθ))\Rightarrow p= \dfrac{{2\sin \theta \left( {1 - (\cos \theta + \sin \theta )} \right)}}{{\left( {1 + (\cos \theta + \sin \theta )} \right)\left( {1 - (\cos \theta + \sin \theta )} \right)}}
The denominator is in the form (a+b)(ab)(a + b)(a - b), by applying the formula: (a+b)(ab)=a2b2(a + b)(a - b) = {a^2} - {b^2},
p=2sinθ(1(cosθ+sinθ))12(cosθ+sinθ)2\Rightarrow p= \dfrac{{2\sin \theta \left( {1 - (\cos \theta + \sin \theta )} \right)}}{{{1^2} - {{(\cos \theta + \sin \theta )}^2}}}

Now the denominator is in the form (a+b)2{(a + b)^2}, by applying the formula: (a+b)2=a2+b2+2ab{(a + b)^2} = {a^2} + {b^2} + 2ab,
p=2sinθ(1(cosθ+sinθ))12(cos2θ+sin2θ+2cosθsinθ)p = \dfrac{{2\sin \theta \left( {1 - (\cos \theta + \sin \theta )} \right)}}{{{1^2} - ({{\cos }^2}\theta + {{\sin }^2}\theta + 2\cos \theta \sin \theta )}}
We know that 12=1{1^2} = 1 and sin2θ+cos2θ=1{\sin ^2}\theta + {\cos ^2}\theta = 1 by substituting the values,
p=2sinθ(1(cosθ+sinθ))1(1+2cosθsinθ)p= \dfrac{{2\sin \theta \left( {1 - (\cos \theta + \sin \theta )} \right)}}{{1 - (1 + 2\cos \theta \sin \theta )}}
Multiply - inside the bracket in both numerator and denominator,
p=2sinθ(1cosθsinθ)112cosθsinθp = \dfrac{{2\sin \theta \left( {1 - \cos \theta - \sin \theta } \right)}}{{1 - 1 - 2\cos \theta \sin \theta }}
In denominator +1 + 1 and 1 - 1 will get cancel,
p=2sinθ(1cosθsinθ)2cosθsinθp = \dfrac{{2\sin \theta \left( {1 - \cos \theta - \sin \theta } \right)}}{{ - 2\cos \theta \sin \theta }}
2sinθ2\sin \theta is common in both the numerator and denominator, which will get cancel,
p=1cosθsinθcosθp = \dfrac{{1 - \cos \theta - \sin \theta }}{{ - \cos \theta }}

In denominator there is -, let multiply both the numerator and denominator by -,
p=(1cosθsinθ)(cosθ)p = \dfrac{{ - (1 - \cos \theta - \sin \theta )}}{{ - ( - \cos \theta )}}
- in the denominator will get cancel and multiply - inside the bracket in numerator,
p=1+cosθ+sinθcosθp= \dfrac{{ - 1 + \cos \theta + \sin \theta }}{{\cos \theta }}
Rearranging the order in numerators,
p=cosθ+sinθ1cosθp = \dfrac{{\cos \theta + \sin \theta - 1}}{{\cos \theta }} ………………………………………. (11)
Now simplify qq,
q=cosθ1+sinθq = \dfrac{{\cos \theta }}{{1 + \sin \theta }}
By rationalizing,
q=cosθ1+sinθ×1sinθ1sinθq = \dfrac{{\cos \theta }}{{1 + \sin \theta }} \times \dfrac{{1 - \sin \theta }}{{1 - \sin \theta }}
q=cosθ(1sinθ)(1+sinθ)(1sinθ)\Rightarrow q = \dfrac{{\cos \theta (1 - \sin \theta )}}{{(1 + \sin \theta )(1 - \sin \theta )}}

Applying (a+b)(ab)=a2b2(a + b)(a - b) = {a^2} - {b^2} in denominator,
q=cosθ(1sinθ)12sin2θq = \dfrac{{\cos \theta (1 - \sin \theta )}}{{{1^2} - {{\sin }^2}\theta }}
We know that, sin2θ+cos2θ=1{\sin ^2}\theta + {\cos ^2}\theta = 1, thus cos2θ=1sin2θ{\cos ^2}\theta = 1 - {\sin ^2}\theta , by substituting this,
q=cosθ(1sinθ)cos2θq = \dfrac{{\cos \theta (1 - \sin \theta )}}{{{{\cos }^2}\theta }},
cosθ\cos \theta , in both numerator and denominator will get cancel,
q=1sinθcosθq= \dfrac{{1 - \sin \theta }}{{\cos \theta }}
q=1sinθcosθ\Rightarrow q = \dfrac{{1 - \sin \theta }}{{\cos \theta }} …………….…………………………………….. (22)

Adding equation 11 and 22,
p+q=cosθ+sinθ1cosθ+1sinθcosθp + q = \dfrac{{\cos \theta + \sin \theta - 1}}{{\cos \theta }} + \dfrac{{1 - \sin \theta }}{{\cos \theta }}
Here the denominators are same thus,
p+q=cosθ+sinθ1+1sinθcosθp + q = \dfrac{{\cos \theta + \sin \theta - 1 + 1 - \sin \theta }}{{\cos \theta }}
+sinθ+ \sin \theta and sinθ- \sin \theta will get cancel similarly 1 - 1 and +1 + 1 will also get cancel,
p+q=cosθcosθp + q = \dfrac{{\cos \theta }}{{\cos \theta }}
cosθ\cos \theta in both numerators and denominators will get cancel and the result will be,
p+q=1\therefore p + q = 1

Hence option D is correct.

Note: Rationalization is a method used to simplify the fractions in which the conjugate of the denominator is multiplied with both the numerator and denominator.Conjugate means changing the sign in the middle of two numbers. While simplifying we can find the terms in certain form which already have a predefined formulas like,
(a+b)2=a2+2ab+b2{(a + b)^2} = {a^2} + 2ab + {b^2}
(ab)2=a22ab+b2\Rightarrow {(a - b)^2} = {a^2} - 2ab + {b^2}
(a+b)(ab)=a2b2\Rightarrow (a + b)(a - b) = {a^2} - {b^2}
The numbers with the opposite sign will cancel.