Solveeit Logo

Question

Question: If P is the point in the argand diagram corresponding to the complex number \(\sqrt 3 + i\) and if \...

If P is the point in the argand diagram corresponding to the complex number 3+i\sqrt 3 + i and if OPQOPQ is an isosceles right angled triangle ,right angled at OO, then QQ represents the complex number:

Explanation

Solution

The argand diagram is used for graphical representation of complex numbers in the form of x+iyx + iy in the complex plane. Similar to xaxisx - axis and yaxisy - axis in the two dimensional geometry we have a horizontal axis used to indicate real numbers and a vertical axis used to represent imaginary numbers in case of an argand plane. For example: 5+4i5 + 4i represents the ordered pair (5,4)\left( {5,4} \right) geographically in the argand plane.

Complete step-by-step solution:
The given complex number is; P=3+iP = \sqrt 3+i
According to the given question, let us draw the diagram to understand the question in a better way;

Figure (1)\left( 1 \right) : Isosceles right angled triangle OPQOPQ
z=x+iy (Real part = x, Imaginary part = y)\Rightarrow z = x + iy{\text{ }}\left( {{\text{Real part = }}x,{\text{ Imaginary part = }}y} \right)
We know that if two lines are perpendicular to each other then the product of their slopes will be equal to 1 - 1 ; i.e.
m1×m2=1\Rightarrow {m_1} \times {m_2} = - 1
First, let us calculate the slope (m1)\left( {{m_1}} \right) of line OP;
m1=[1030]=13 ......(1)\Rightarrow {m_1} = \left[ {\dfrac{{1 - 0}}{{\sqrt 3 - 0}}} \right] = \dfrac{1}{{\sqrt 3 }}{\text{ }}......\left( 1 \right)
Now, let us calculate slope (m2)\left( {{m_2}} \right) of line OQ;
m2=[y0x0]=yx ......(2)\Rightarrow {m_2} = \left[ {\dfrac{{y - 0}}{{x - 0}}} \right] = \dfrac{y}{x}{\text{ }}......\left( 2 \right)
Put the respective values in the property m1×m2=1{m_1} \times {m_2} = - 1 , we get;
13 ×yx =1\Rightarrow \dfrac{1}{{\sqrt 3 }}{\text{ }} \times \dfrac{y}{x}{\text{ }} = - 1
Simplifying the above equation;
y=3x ......(3)\Rightarrow y = - \sqrt 3 x{\text{ }}......\left( 3 \right)
Using the properties of isosceles triangles (stated in the note part) let us try to solve our question;
According to figure (1)\left( 1 \right) , OP=OQ (Congruent sides of the isosceles triangle)OP = OQ{\text{ }}\left( {\because {\text{Congruent sides of the isosceles triangle}}} \right)
OP2=OQ2\therefore O{P^2} = O{Q^2} will also be true.
By the distance formula between two points, we know that;
d=(x2x1)2+(y2y1)2\Rightarrow d = \sqrt {{{\left( {{x_2} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2}} ( where (x1,y1)\left( {{x_1},{y_1}} \right) and (x2,y2)\left( {{x_2},{y_2}} \right) are the coordinates of first
point and second point respectively )
OP2=[((3)20)+((1)20)]\Rightarrow O{P^2} = \left[ {\left( {{{\left( {\sqrt 3 } \right)}^2} - 0} \right) + \left( {{{\left( 1 \right)}^2} - 0} \right)} \right]
OP2=3+1=4 ......(4)\Rightarrow O{P^2} = 3 + 1 = 4{\text{ }}......\left( 4 \right)
Now, let us similarly find the equation for OQ;
OQ2=[((x)20)+((y)20)]\Rightarrow O{Q^2} = \left[ {\left( {{{\left( x \right)}^2} - 0} \right) + \left( {{{\left( y \right)}^2} - 0} \right)} \right]
OQ2=x2+y2\Rightarrow O{Q^2} = {x^2} + {y^2}
Now, put the value of y=3xy = - \sqrt 3 x from equation (3)\left( 3 \right) in the above equation we get;
OQ2=x2+(3x)2\Rightarrow O{Q^2} = {x^2} + {\left( { - \sqrt 3 x} \right)^2}
The above equation can be further simplified as;
OQ2=x2+3x2\Rightarrow O{Q^2} = {x^2} + 3{x^2}
OQ2=4x2 ......(5)\Rightarrow O{Q^2} = 4{x^2}{\text{ }}......\left( 5 \right)
On comparing equation (4)\left( 4 \right) and equation (5)\left( 5 \right) , we get;
4x2=4\Rightarrow 4{x^2} = 4
x2=1\Rightarrow {x^2} = 1
Which means ; x=±1x = \pm 1
Now put the value of x in equation (3)x{\text{ in equation }}\left( 3 \right) to get the value of yy ; we get two cases;
When x=1 , y=3x = 1{\text{ , }}y = - \sqrt 3
And x=1 y=3x = - 1{\text{ }}y = \sqrt 3
Therefore, there can be two possible values of QQ , i.e. Q(±1 , 3)Q\left( { \pm 1{\text{ }},{\text{ }} \mp \sqrt 3 } \right)
Therefore, the answer for this question is Q=13i or Q=1+3iQ = 1 - \sqrt 3 i{\text{ or }}Q = - 1 + \sqrt 3 i.

Note: Here are the important properties of a right angled isosceles triangle. It will be easier to understand via a diagram, the isosceles triangle theorem states that;

Figure (2)\left( 2 \right) : Isosceles triangle theorem
(1)\left( 1 \right) In the above diagram AB=BC=XAB = BC = X , means two sides of the triangle are congruent, then the third side will be equal to X2X\sqrt 2 means the hypotenuse is 2\sqrt 2 times the length of a leg.
(2)\left( 2 \right) If AB=BCAB = BC then BAC=BCA\angle BAC = \angle BCA .