Solveeit Logo

Question

Mathematics Question on Complex Numbers and Quadratic Equations

If PP is the affix of zz in the Argand diagram and PP moves so that ziz1\frac{z-i}{z-1} is always purely imaginary, then locus of zz is

A

circle, centre (2, 2), radius 12\frac{1}{2}

B

circle, centre (12,12)\left(-\frac{1}{2},-\frac{1}{2}\right), radius 12\frac{1}{\sqrt2}

C

circle, (12,12)\left(\frac{1}{2},\frac{1}{2}\right), radius 12\frac{1}{\sqrt2}

D

none of these

Answer

none of these

Explanation

Solution

ziz1=x+iy1x+iy1\frac{z-i}{z-1}=\frac{x+iy-1}{x+iy-1} =x+i(y1)x1+iy(x1)iy(x1)iy=\frac{x+i\left(y-1\right)}{x-1+iy} \cdot \frac{\left(x-1\right)-iy}{\left(x-1\right)-iy} =x(x1)+y(y1)+i[(x1)(y1)xy](x1)2+y2=\frac{x\left(x-1\right)+y\left(y-1\right)+i\left[\left(x-1\right)\left(y-1\right)-xy\right]}{\left(x-1\right)^{2}+y^{2}} Since ziz1\frac{z-i}{z-1} is purely imaginary, x2+y2xy=0\therefore x^{2}+y^{2}-x-y=0, which is a circle with centre (12,12)\left(\frac{1}{2}, \frac{1}{2}\right) and radius =12=\frac{1}{\sqrt{2}}.