Question
Question: If P is any point lying on the ellipse \(\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} = 1\), a \> b wit...
If P is any point lying on the ellipse a2x2+b2y2=1, a > b with foci S and S', then locus of the incentre of the triangle PSS' is
A
(1−e)x2+(1+e)y2=a2
B
(1+e)x2+(1−e)y2=a2e2
C
(1+e)x2+(1−e)y2=a2
D
(1−e)x2+(1+e)y2=a2e2
Answer
(1−e)x2+(1+e)y2=a2e2
Explanation
Solution
Let coordinates of P be (a cosθ, b sin θ),
SS' = 2ae, PS = a (1-e cosθ) and PS' = a(1+e cosθ)
∴ Coordinates of the incentre is given by
x=2a(1+e)2ae.acosθ−aea(1−ecosθ)+ae.a(1+ecosθ)= 2a(1+e)a2e[2cosθ−1+ecosθ+1+ecosθ]=aecosθand y =
2a(1+e)2ae.bsinθ=1+ebesinθ∴ Locus of the incentre of the
triangle PS'S is
a2e2x2+b2e2y2(1+e)2=1
or a2e2x2+a2e2(1+e)(1−e)y2(1+e)2=1
or (1−e)x2+(1+e)y2=a2e2