Solveeit Logo

Question

Question: If P is a variable point on the ellipse \(\frac{x^{2}}{16} + \frac{y^{2}}{9} = 1\) with foci S and S...

If P is a variable point on the ellipse x216+y29=1\frac{x^{2}}{16} + \frac{y^{2}}{9} = 1 with foci S and S' and Δ\Delta is the area of triangle SPS' , then the maximum value of Δ\Delta is

A

7\sqrt{7}

B

272\sqrt{7}

C

37\sqrt{7}

D

47\sqrt{7}

Answer

37\sqrt{7}

Explanation

Solution

Let P = (acosθ, bsinθ)

SS’ = 2ae

The area of ∆PSS’ = 12\frac{1}{2} (SS’) (perpendicular distance from P to SS’)

= 12(2ae)(bsinθ)\frac{1}{2}(2ae)(b\sin\theta)

∴ Maximum of ∆ PSS’ = abc (since sinθ ≤ 1)

= 4 x 3 x 74=37\frac{\sqrt{7}}{4} = 3\sqrt{7}.