Solveeit Logo

Question

Question: If P is a point on the altitude AD of the triangle ABC such that ĐPBD = <img src="https://cdn.purees...

If P is a point on the altitude AD of the triangle ABC such that ĐPBD = , then AP is equal to -

A

2a sin

B

2b sin

C

2c sin B3\frac { B } { 3 }

D
Answer

2c sin B3\frac { B } { 3 }

Explanation

Solution

ĐBPA = 900 + B3\frac { B } { 3 } , ĐABP =

In DABP (sine Rule)

APsin(2B3)\frac { \mathrm { AP } } { \sin \left( \frac { 2 B } { 3 } \right) } = = ccos(B3)\frac { \mathrm { c } } { \cos \left( \frac { \mathrm { B } } { 3 } \right) }

̃ AP = csin(2BC)cos(B3)\frac { \operatorname { csin } \left( \frac { 2 B } { C } \right) } { \cos \left( \frac { B } { 3 } \right) } =

̃ AP = 2c sin .