Solveeit Logo

Question

Question: If P is a point on the altitude AD of the triangle ABC such that ∠CBP = B/3, then AP is equal to...

If P is a point on the altitude AD of the triangle ABC such that ∠CBP = B/3, then AP is equal to

A

2a sin

B

2b sin

C

2c sinB3\frac { B } { 3 }

D

2c sin

Answer

2c sinB3\frac { B } { 3 }

Explanation

Solution

Here ∠BPA = 900 + B/3, ∠ABP = 2B/3.

In ∆ABP (by sine rule)

APsin(2 B/3)=Csin(90+B/3)=ccos(B/3)\frac { \mathrm { AP } } { \sin ( 2 \mathrm {~B} / 3 ) } = \frac { \mathrm { C } } { \sin \left( 90 ^ { \circ } + \mathrm { B } / 3 \right) } = \frac { \mathrm { c } } { \cos ( \mathrm { B } / 3 ) } ⇒AP ⇒ AP = 2 c sin(B/3)