Question
Question: If P = \(\int_{}^{}e^{ax}\cos\) bx dx and Q = \(\int_{}^{}e^{ax}\sin\)bx dx, then (P<sup>2</sup> + Q...
If P = ∫eaxcos bx dx and Q = ∫eaxsinbx dx, then (P2 + Q2) is equal to (neglect integration constant)
A
a2+b2eax
B
a2+b2ebx
C
a2+b2e2ax
D
a2+b2e(a+b)x
Answer
a2+b2e2ax
Explanation
Solution
P + iQ = ∫eaxcosbxdx + i ∫eaxsinbxdx
P + iQ = ∫eax(cosbx+isinbx) dx
P + iQ = ∫(eaxeibx) dx
P + iQ = ∫e(ax+ibx) dx
P + iQ = (a+ib)e(a+ib)x
(P + iQ) = (a+ib)eaxeibx
Take modulus on both side
P2+Q2 = a2+b2eax
P2 + Q2 = (a2+b2)e2ax
Q = cos bx + i sin bx
= cos2bx+sin2bx = 1