Solveeit Logo

Question

Question: If P = \(\int_{}^{}e^{ax}\cos\) bx dx and Q = \(\int_{}^{}e^{ax}\sin\)bx dx, then (P<sup>2</sup> + Q...

If P = eaxcos\int_{}^{}e^{ax}\cos bx dx and Q = eaxsin\int_{}^{}e^{ax}\sinbx dx, then (P2 + Q2) is equal to (neglect integration constant)

A

eaxa2+b2\frac{e^{ax}}{a^{2} + b^{2}}

B

ebxa2+b2\frac{e^{bx}}{a^{2} + b^{2}}

C

e2axa2+b2\frac{e^{2ax}}{a^{2} + b^{2}}

D

e(a+b)xa2+b2\frac{e^{(a + b)x}}{a^{2} + b^{2}}

Answer

e2axa2+b2\frac{e^{2ax}}{a^{2} + b^{2}}

Explanation

Solution

P + iQ = eaxcosbxdx\int_{}^{}{e^{ax}\cos bxdx} + i eaxsinbxdx\int_{}^{}{e^{ax}\sin bxdx}

P + iQ = eax(cosbx+isinbx)\int_{}^{}{e^{ax}(\cos bx + i\sin bx)} dx

P + iQ = (eaxeibx)\int_{}^{}{(e^{ax}e^{ibx})} dx

P + iQ = e(ax+ibx)\int_{}^{}e^{(ax + ibx)} dx

P + iQ = e(a+ib)x(a+ib)\frac{e^{(a + ib)x}}{(a + ib)}

(P + iQ) = eaxeibx(a+ib)\frac{e^{ax}e^{ibx}}{(a + ib)}

Take modulus on both side

P2+Q2\sqrt { \mathrm { P } ^ { 2 } + \mathrm { Q } ^ { 2 } } = eaxa2+b2\frac{e^{ax}}{\sqrt{a^{2} + b^{2}}}

P2 + Q2 = e2ax(a2+b2)\frac{e^{2ax}}{(a^{2} + b^{2})}

Q = cos bx + i sin bx

= cos2bx+sin2bx\sqrt{\cos^{2}bx + \sin^{2}bx} = 1