Solveeit Logo

Question

Mathematics Question on Parabola

If P(h,k)P ( h , k ) be a point on the parabola x=4y2x=4 y^2, which is nearest to the point Q(0,33)Q (0,33), then the distance of PP from the directrix of the parabola y2=4(x+y)y^2=4(x+y) is equal to :

A

4

B

2

C

8

D

6

Answer

6

Explanation

Solution

Equation of normal
y=−tx+2at+at3
y=−tx+162​t+161​t3
It passes through (0,33)
33=8t​+16t3​
t3+2t−528=0
(t−8)(t2+8t+66)=0
t=8
P(at2,2at)=(161​×64,2×161​×8)=(4,1)
Parabola :
y2=4(x+y)
⇒y2−4y=4x
⇒(y−2)2=4(x+1)
Equation of directix :-
x+1=−1
x=−2
Distance of point =6
Ans. : (4)