Solveeit Logo

Question

Question: If \(P=\displaystyle \lim_{n\to \infty }\dfrac{{{\left( \prod\limits_{r=1}^{n}{\left( {{n}^{3}}+{{r}...

If P=limn(r=1n(n3+r3))1nn3P=\displaystyle \lim_{n\to \infty }\dfrac{{{\left( \prod\limits_{r=1}^{n}{\left( {{n}^{3}}+{{r}^{3}} \right)} \right)}^{\dfrac{1}{n}}}}{{{n}^{3}}} and λ=011x3+1\lambda =\int_{0}^{1}{\dfrac{1}{{{x}^{3}}+1}}, then lnP is equal to
[a] ln21+λ\ln 2-1+\lambda
[b] ln23+3λ\ln 2-3+3\lambda
[c] 2ln2λ2\ln 2-\lambda
[d] ln43+4λ\ln 4-3+4\lambda

Explanation

Solution

In the expression for P take log on both sides and use the fact that log(r=1nf(r))=r=1nlog(f(r))\log \left( \prod\limits_{r=1}^{n}{f\left( r \right)} \right)=\sum\limits_{r=1}^{n}{\log \left( f\left( r \right) \right)} and log(an)=nloga\log \left( {{a}^{n}} \right)=n\log a. Hence prove that logP=1nr=1nlog(1+r3n3)\log P=\dfrac{1}{n}\sum\limits_{r=1}^{n}{\log \left( 1+\dfrac{{{r}^{3}}}{{{n}^{3}}} \right)}. Use the fact that limn1nr=xyf(rn)=abf(x)dx\displaystyle \lim_{n\to \infty }\dfrac{1}{n}\sum\limits_{r=x}^{y}{f\left( \dfrac{r}{n} \right)=\int_{a}^{b}{f\left( x \right)dx}} where a=limnxna=\displaystyle \lim_{n\to \infty }\dfrac{x}{n} and b=limnynb=\displaystyle \lim_{n\to \infty }\dfrac{y}{n}. Hence prove that lnP=01log(1+x3)dx\ln P=\int_{0}^{1}{\log \left( 1+{{x}^{3}} \right)dx} Using integration by parts express lnP\ln P in terms of λ\lambda and hence find which of the options is correct.

Complete step-by-step answer:
We have
P=limn(r=1n(n3+r3))1nn3P=\displaystyle \lim_{n\to \infty }\dfrac{{{\left( \prod\limits_{r=1}^{n}{\left( {{n}^{3}}+{{r}^{3}} \right)} \right)}^{\dfrac{1}{n}}}}{{{n}^{3}}}
Hence, we have
P=limn(r=1nn3(1+r3n3))1nn3P=\displaystyle \lim_{n\to \infty }\dfrac{{{\left( \prod\limits_{r=1}^{n}{{{n}^{3}}\left( 1+\dfrac{{{r}^{3}}}{{{n}^{3}}} \right)} \right)}^{\dfrac{1}{n}}}}{{{n}^{3}}}
We know that r=1naf(r)=anr=1nf(r)\prod\limits_{r=1}^{n}{af\left( r \right)}={{a}^{n}}\prod\limits_{r=1}^{n}{f\left( r \right)}, where a is independent of r.
Hence, we have
P=limn(n3nr=1n(1+r3n3))1nn3=limn(r=1n(1+r3n3))1nP=\displaystyle \lim_{n\to \infty }\dfrac{{{\left( {{n}^{3n}}\prod\limits_{r=1}^{n}{\left( 1+\dfrac{{{r}^{3}}}{{{n}^{3}}} \right)} \right)}^{\dfrac{1}{n}}}}{{{n}^{3}}}=\displaystyle \lim_{n\to \infty }{{\left( \prod\limits_{r=1}^{n}{\left( 1+\dfrac{{{r}^{3}}}{{{n}^{3}}} \right)} \right)}^{\dfrac{1}{n}}}
Taking log on both sides, we get
logP=limn1nlog(r=1n(1+r3n3))\log P=\displaystyle \lim_{n\to \infty }\dfrac{1}{n}\log \left( \prod\limits_{r=1}^{n}{\left( 1+\dfrac{{{r}^{3}}}{{{n}^{3}}} \right)} \right)
We know that log(r=1nf(r))=r=1nlog(f(r))\log \left( \prod\limits_{r=1}^{n}{f\left( r \right)} \right)=\sum\limits_{r=1}^{n}{\log \left( f\left( r \right) \right)}
Hence, we have
logP=limn1nr=1nlog(1+r3n3)\log P=\displaystyle \lim_{n\to \infty }\dfrac{1}{n}\sum\limits_{r=1}^{n}{\log \left( 1+\dfrac{{{r}^{3}}}{{{n}^{3}}} \right)}
We know that limn1nr=xyf(rn)=abf(x)dx\displaystyle \lim_{n\to \infty }\dfrac{1}{n}\sum\limits_{r=x}^{y}{f\left( \dfrac{r}{n} \right)=\int_{a}^{b}{f\left( x \right)dx}} where a=limnxna=\displaystyle \lim_{n\to \infty }\dfrac{x}{n} and b=limnynb=\displaystyle \lim_{n\to \infty }\dfrac{y}{n}.
Hence, we have
logP=01log(1+x3)dx\log P=\int_{0}^{1}{\log \left( 1+{{x}^{3}} \right)dx}
We know that if f(x)dx=u(x)\int{f\left( x \right)dx}=u\left( x \right) and ddxg(x)=v(x)\dfrac{d}{dx}g\left( x \right)=v\left( x \right), then f(x)g(x)dx=g(x)u(x)u(x)v(x)dx\int{f\left( x \right)g\left( x \right)dx}=g\left( x \right)u\left( x \right)-\int{u\left( x \right)v\left( x \right)dx}. This is known as integration by parts.
The function f(x) is called the second function and the function g(x) is called the first function.
The order of preference (in general) for choosing first function is given by ILATE rule
I = Inverse Trigonometric
L = Logarithmic
A = Algebraic
T = Trigonometric
E = Exponential
Using the above rule, we will take f(x) =1 and g(x)=log(1+x3)g\left( x \right)=\log \left( 1+{{x}^{3}} \right), and we have
u(x)=1dx=xu\left( x \right)=\int{1dx}=x and v(x)=ddx(log(1+x3))=3x21+x3v\left( x \right)=\dfrac{d}{dx}\left( \log \left( 1+{{x}^{3}} \right) \right)=\dfrac{3{{x}^{2}}}{1+{{x}^{3}}}
Hence, we have
logP=(log(1+x3)x)01013x3x3+1dx =ln2301x3x3+1dx \begin{aligned} & \log P=\left. \left( \log \left( 1+{{x}^{3}} \right)x \right) \right|_{0}^{1}-\int_{0}^{1}{\dfrac{3{{x}^{3}}}{{{x}^{3}}+1}dx} \\\ & =\ln 2-3\int_{0}^{1}{\dfrac{{{x}^{3}}}{{{x}^{3}}+1}dx} \\\ \end{aligned}
Adding and subtracting 1 in the numerator of the integrand, we get
logP=ln2301x3+11x3+1dx =ln23011dx+301dxx3+1 \begin{aligned} & \log P=\ln 2-3\int_{0}^{1}{\dfrac{{{x}^{3}}+1-1}{{{x}^{3}}+1}dx} \\\ & =\ln 2-3\int_{0}^{1}{1dx}+3\int_{0}^{1}{\dfrac{dx}{{{x}^{3}}+1}} \\\ \end{aligned}
Hence, we have
logP=ln23+3λ\log P=\ln 2-3+3\lambda

So, the correct answer is “Option b”.

Note: [1] The formula limn1nr=xyf(rn)=abf(x)dx\displaystyle \lim_{n\to \infty }\dfrac{1}{n}\sum\limits_{r=x}^{y}{f\left( \dfrac{r}{n} \right)=\int_{a}^{b}{f\left( x \right)dx}} where a=limnxna=\displaystyle \lim_{n\to \infty }\dfrac{x}{n} and b=limnynb=\displaystyle \lim_{n\to \infty }\dfrac{y}{n} is actually definition of definite integral as a limit of a sum. We can memorise the formula by keeping the following relations in mind
,xa,yb,rnx,1ndx\sum{{}}\to \int{{}},x \to a,y\to b,\dfrac{r}{n}\to x,\dfrac{1}{n}\to dx