Solveeit Logo

Question

Mathematics Question on Matrices

if P =[i0i 0ii ii0]\begin{bmatrix}i&0&-i\\\ 0&-i&i\\\ -i&i&0\end{bmatrix} and Q=[ii 00 ii]Q=\begin{bmatrix}-i&i\\\ 0&0\\\ i&-i\end{bmatrix} then PQPQ is equal to

A

[22 11 11]\begin{bmatrix}-2&2\\\ 1&-1\\\ 1&-1\end{bmatrix}

B

[22 11 11]\begin{bmatrix}2&-2\\\ -1&1\\\ -1&1\end{bmatrix}

C

[22 11 ]\begin{bmatrix}2&-2\\\ -1&1\\\ \end{bmatrix}

D

[100 010 001]\begin{bmatrix}1&0&0\\\ 0&1&0\\\ 0&0&1\end{bmatrix}

Answer

[22 11 11]\begin{bmatrix}2&-2\\\ -1&1\\\ -1&1\end{bmatrix}

Explanation

Solution

Since, P=[i1i 0ii ii0]andQ=[ii 00 ii]P = \begin{bmatrix}i&1&-i\\\ 0&-i&i\\\ -i&i&0\end{bmatrix} and Q = \begin{bmatrix}-i&i\\\ 0&0\\\ i&-i\end{bmatrix} PQ=[i0i 0ii ii0][ii 00 ii]\therefore PQ= \begin{bmatrix}i&0&-i\\\ 0&-i&i\\\ -i&i&0\end{bmatrix}\begin{bmatrix}-i&i\\\ 0&0\\\ i&-i\end{bmatrix} =[i2i2i2+i2 i2i2 i2i2][1+111 11 11]=[22 11 11]= \begin{bmatrix}-i^{2}-i^{2}&i^{2}+i^{2}\\\ i^{2}&-i^{2}\\\ i^{2}&-i^{2}\end{bmatrix}\begin{bmatrix}1+1&-1-1\\\ -1&1\\\ -1&1\end{bmatrix}=\begin{bmatrix}2&-2\\\ -1&1\\\ -1&1\end{bmatrix}