Solveeit Logo

Question

Mathematics Question on Matrices

If P=[53 12]P = \begin{bmatrix} 5 & 3 \\\ -1 & -2 \end{bmatrix} satisfies the equation P23P7I=0P^2 - 3P - 7I = 0, where II is an identity matrix of order 2, then P1P^{-1} is:

A

17[23 15]\frac{1}{7} \begin{bmatrix} 2 & 3 \\\ -1 & -5 \end{bmatrix}

B

[23 15]\begin{bmatrix} 2 & 3 \\\ -1 & -5 \end{bmatrix}

C

17[23 11]\frac{1}{7} \begin{bmatrix} 2 & 3 \\\ -1 & -1 \end{bmatrix}

D

17[25 11]\frac{1}{7} \begin{bmatrix} 2 & 5 \\\ -1 & -1 \end{bmatrix}

Answer

17[23 15]\frac{1}{7} \begin{bmatrix} 2 & 3 \\\ -1 & -5 \end{bmatrix}

Explanation

Solution

Given that P23P7I=0P^2 - 3P - 7I = 0, we can rearrange this as:

P2=3P+7I.P^2 = 3P + 7I.

Multiplying both sides by P1P^{-1}, we get:

P=3I+7P1.P = 3I + 7P^{-1}.

Rearranging for P1P^{-1}:

P1=17(P3I).P^{-1} = \frac{1}{7}(P - 3I).

Substituting P=[53 12]P = \begin{bmatrix} 5 & 3 \\\ -1 & -2 \end{bmatrix} and I=[10 01]I = \begin{bmatrix} 1 & 0 \\\ 0 & 1 \end{bmatrix}:

P3I=[53 12]3×[10 01]=[23 15].P - 3I = \begin{bmatrix} 5 & 3 \\\ -1 & -2 \end{bmatrix} - 3 \times \begin{bmatrix} 1 & 0 \\\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 3 \\\ -1 & -5 \end{bmatrix}.

Therefore:

P1=17[23 15].P^{-1} = \frac{1}{7} \begin{bmatrix} 2 & 3 \\\ -1 & -5 \end{bmatrix}.