Solveeit Logo

Question

Question: If P be the point (2, 6, 3), then the equation of the plane through P at right angle to OP, O being ...

If P be the point (2, 6, 3), then the equation of the plane through P at right angle to OP, O being the origin, is

A

2x+6y+3z=72x + 6y + 3z = 7

B

2x6y+3z=72x - 6y + 3z = 7

C

2x+6y3z=492x + 6y - 3z = 49

D

2x+6y+3z=492x + 6y + 3z = 49

Answer

2x+6y+3z=492x + 6y + 3z = 49

Explanation

Solution

Distance of point P from origin OP=4+36+9=7O P = \sqrt { 4 + 36 + 9 } = 7

Now d.r’s of OP = 2–0, 6 – 0, 3 – 0 = 2, 6, 3

∴ d.c’s of OP = 27,67,37\frac { 2 } { 7 } , \frac { 6 } { 7 } , \frac { 3 } { 7 }

∴Equation of plane in normal form is lx+my+nz=pl x + m y + n z = p

27x+67y+37z=7\frac { 2 } { 7 } x + \frac { 6 } { 7 } y + \frac { 3 } { 7 } z = 72x+6y+3z=492 x + 6 y + 3 z = 49 .