Solveeit Logo

Question

Question: If 'P' be a point on the graph of y = <img src="https://cdn.pureessence.tech/canvas_659.png?top_left...

If 'P' be a point on the graph of y = then co-ordinates of 'P' such that tangent drawn to the curve at 'P' has greatest slope in magnitude is

A

(0, 0)

B

(3,34)\left( \sqrt { 3 } , \frac { \sqrt { 3 } } { 4 } \right)

C

(3,34)\left( - \sqrt { 3 } , - \frac { \sqrt { 3 } } { 4 } \right)

D

None of these

Answer

(0, 0)

Explanation

Solution

dydx=1x2(1+x2)2\frac { d y } { d x } = \frac { 1 - x ^ { 2 } } { \left( 1 + x ^ { 2 } \right) ^ { 2 } }d2ydx2=2x(x23)(1+x2)3\frac { d ^ { 2 } y } { d x ^ { 2 } } = \frac { 2 x \left( x ^ { 2 } - 3 \right) } { \left( 1 + x ^ { 2 } \right) ^ { 3 } }

using the sign scheme ford2ydx2\frac { d ^ { 2 } y } { d x ^ { 2 } }we get that x = ±3\pm \sqrt { 3 }are the points of minima for f '(x), and x = 0 is the point of maxima for f'(x).

f '(0) = 1, f(±3)=13(1+3)2=18f ^ { \prime } ( \pm \sqrt { 3 } ) = \frac { 1 - 3 } { ( 1 + 3 ) ^ { 2 } } = - \frac { 1 } { 8 }. Thus x = 0 is the required point.