Solveeit Logo

Question

Question: If P and Q be the middle points of the sides BC and CD of the parallelogram ABCD, then \(\overright...

If P and Q be the middle points of the sides BC and CD of the parallelogram ABCD, then AP+AQ=\overrightarrow { A P } + \overrightarrow { A Q } =

A

AC\overrightarrow { A C }

B

12AC\frac { 1 } { 2 } \overrightarrow { A C }

C

23AC\frac { 2 } { 3 } \overrightarrow { A C }

D

32AC\frac { 3 } { 2 } \overrightarrow { A C }

Answer

32AC\frac { 3 } { 2 } \overrightarrow { A C }

Explanation

Solution

AP=AB+BP=AB+12BC=AB+12AD\overrightarrow { A P } = \overrightarrow { A B } + \overrightarrow { B P } = \overrightarrow { A B } + \frac { 1 } { 2 } \overrightarrow { B C } = \overrightarrow { A B } + \frac { 1 } { 2 } \overrightarrow { A D } …..(i)

AQ=AD+DQ=AD+12DC=AD+12AB\overrightarrow { A Q } = \overrightarrow { A D } + \overrightarrow { D Q } = \overrightarrow { A D } + \frac { 1 } { 2 } \overrightarrow { D C } = \overrightarrow { A D } + \frac { 1 } { 2 } \overrightarrow { A B } …..(ii)

By (i) and (ii), we get,

AP+AQ=32(AB+AD)=32(AB+BC)=32AC\overrightarrow { A P } + \overrightarrow { A Q } = \frac { 3 } { 2 } ( \overrightarrow { A B } + \overrightarrow { A D } ) = \frac { 3 } { 2 } ( \overrightarrow { A B } + \overrightarrow { B C } ) = \frac { 3 } { 2 } \overrightarrow { A C }.