Solveeit Logo

Question

Question: If P and Q are two points whose coordinates are \(\left( {a{t^2},2at} \right)\) and \(\left( {\dfrac...

If P and Q are two points whose coordinates are (at2,2at)\left( {a{t^2},2at} \right) and (at2,2at)\left( {\dfrac{a}{{{t^2}}}, - \dfrac{{2a}}{t}} \right) respectively. And S is the point (a,0)\left( {a,0} \right) . Show that 1SP+1SQ\dfrac{1}{{SP}} + \dfrac{1}{{SQ}} is independent of t.

Explanation

Solution

With the coordinates of the given points we need to find SP and SQ using the distance formula (x2x1)2+(y2y1)2\sqrt {{{\left( {{x_2} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2}} and substituting the values in 1SP+1SQ\dfrac{1}{{SP}} + \dfrac{1}{{SQ}}we need to a value without the term t.

Complete step by step solution:
We are given two points P and Q whose coordinates are (at2,2at)\left( {a{t^2},2at} \right) and (at2,2at)\left( {\dfrac{a}{{{t^2}}}, - \dfrac{{2a}}{t}} \right)
We are also given a point S whose coordinates are (a,0)\left( {a,0} \right)
Now let's find SP and SQ
We can use the distance formula to find SQ and SP
(x2x1)2+(y2y1)2\Rightarrow \sqrt {{{\left( {{x_2} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2}}
Now we know the coordinates of S is (a,0)\left( {a,0} \right)and P is (at2,2at)\left( {a{t^2},2at} \right)
SP=(at2a)2+(2at0)2 SP=(at2a)2+(2at)2 SP=a2t4+a22a2t2+4a2t2 SP=a2t4+a2+2a2t2 SP=(at2+a)2 SP=(at2+a)  \Rightarrow SP = \sqrt {{{\left( {a{t^2} - a} \right)}^2} + {{\left( {2at - 0} \right)}^2}} \\\ \Rightarrow SP = \sqrt {{{\left( {a{t^2} - a} \right)}^2} + {{\left( {2at} \right)}^2}} \\\ \Rightarrow SP = \sqrt {{a^2}{t^4} + {a^2} - 2{a^2}{t^2} + 4{a^2}{t^2}} \\\ \Rightarrow SP = \sqrt {{a^2}{t^4} + {a^2} + 2{a^2}{t^2}} \\\ \Rightarrow SP = \sqrt {{{\left( {a{t^2} + a} \right)}^2}} \\\ \Rightarrow SP = \left( {a{t^2} + a} \right) \\\
Now we know the coordinates of S is (a,0)\left( {a,0} \right)and Q is (at2,2at)\left( {\dfrac{a}{{{t^2}}}, - \dfrac{{2a}}{t}} \right)
SQ=(at2a)2+(2at0)2 SQ=(at2a)2+(2at)2 SQ=a2t4+a22a2t2+4a2t2 SQ=a2t4+a2+2a2t2 SQ=(at2+a)2 SQ=(at2+a)  \Rightarrow SQ = \sqrt {{{\left( {\dfrac{a}{{{t^2}}} - a} \right)}^2} + {{\left( {\dfrac{{ - 2a}}{t} - 0} \right)}^2}} \\\ \Rightarrow SQ = \sqrt {{{\left( {\dfrac{a}{{{t^2}}} - a} \right)}^2} + {{\left( {\dfrac{{ - 2a}}{t}} \right)}^2}} \\\ \Rightarrow SQ = \sqrt {\dfrac{{{a^2}}}{{{t^4}}} + {a^2} - \dfrac{{2{a^2}}}{{{t^2}}} + \dfrac{{4{a^2}}}{{{t^2}}}} \\\ \Rightarrow SQ = \sqrt {\dfrac{{{a^2}}}{{{t^4}}} + {a^2} + \dfrac{{2{a^2}}}{{{t^2}}}} \\\ \Rightarrow SQ = \sqrt {{{\left( {\dfrac{a}{{{t^2}}} + a} \right)}^2}} \\\ \Rightarrow SQ = \left( {\dfrac{a}{{{t^2}}} + a} \right) \\\
Now we need to find the value of 1SP+1SQ\dfrac{1}{{SP}} + \dfrac{1}{{SQ}}
Substituting the values found above we get

1SP+1SQ=1at2+a+1at2+a 1SP+1SQ=1at2+a+1a+at2t2 1SP+1SQ=1at2+a+t2at2+a 1SP+1SQ=1+t2at2+a 1SP+1SQ=1+t2a(1+t2) 1SP+1SQ=1a  \Rightarrow \dfrac{1}{{SP}} + \dfrac{1}{{SQ}} = \dfrac{1}{{a{t^2} + a}} + \dfrac{1}{{\dfrac{a}{{{t^2}}} + a}} \\\ \Rightarrow \dfrac{1}{{SP}} + \dfrac{1}{{SQ}} = \dfrac{1}{{a{t^2} + a}} + \dfrac{1}{{\dfrac{{a + a{t^2}}}{{{t^2}}}}} \\\ \Rightarrow \dfrac{1}{{SP}} + \dfrac{1}{{SQ}} = \dfrac{1}{{a{t^2} + a}} + \dfrac{{{t^2}}}{{a{t^2} + a}} \\\ \Rightarrow \dfrac{1}{{SP}} + \dfrac{1}{{SQ}} = \dfrac{{1 + {t^2}}}{{a{t^2} + a}} \\\ \Rightarrow \dfrac{1}{{SP}} + \dfrac{1}{{SQ}} = \dfrac{{1 + {t^2}}}{{a\left( {1 + {t^2}} \right)}} \\\ \Rightarrow \dfrac{1}{{SP}} + \dfrac{1}{{SQ}} = \dfrac{1}{a} \\\

Now we can see that there is no t in the value of 1SP+1SQ\dfrac{1}{{SP}} + \dfrac{1}{{SQ}}

Hence 1SP+1SQ\dfrac{1}{{SP}} + \dfrac{1}{{SQ}} is independent of t.

Note:
The distance formula can also be written as (x1x2)2+(y1y2)2\sqrt {{{\left( {{x_1} - {x_2}} \right)}^2} + {{\left( {{y_1} - {y_2}} \right)}^2}} as taking the minus outside and squaring will also give the same result.
The Distance Formula is a variant of the Pythagorean Theorem