Solveeit Logo

Question

Question: If P and Q are the points \(\left( at_{1}^{2},2at_{1} \right)\) and \(\left( at_{2}^{2},2at_{2} \rig...

If P and Q are the points (at12,2at1)\left( at_{1}^{2},2at_{1} \right) and (at22,2at2)\left( at_{2}^{2},2at_{2} \right)and normals at P and Q meet on the parabola y2=4ax,y^{2} = 4ax, then t1,t2t_{1},t_{2} equals

A

2

B

-1

C

-2

D

-4

Answer

2

Explanation

Solution

Normal at t1't_{1}'is y=t1x+2at1+at13y = - t_{1}x + 2at_{1} + at_{1}^{3}…..(1)

& normal at t2't_{2}' is y=t2x+2at2+at23y = - t_{2}x + 2at_{2} + at_{2}^{3}…….(2)

solving (1)&(2)(1)\&(2)

we get (2a+a(t12+t22+t1t2),at1t2(t1+t2))\left( 2a + a\left( t_{1}^{2} + t_{2}^{2} + t_{1}t_{2} \right), - at_{1}t_{2}\left( t_{1} + t_{2} \right) \right)

which is lie on y2=4axy^{2} = 4ax

a2t12t22(t1+t2)2=8a2+4a2(t12+t22+t1t2)a^{2}t_{1}^{2}t_{2}^{2}\left( t_{1} + t_{2} \right)^{2} = 8a^{2} + 4a^{2}\left( t_{1}^{2} + t_{2}^{2} + t_{1}t_{2} \right)

t12t22(t1+t2)2=8+4(t12+t22+t1t2)t_{1}^{2}t_{2}^{2}\left( t_{1} + t_{2} \right)^{2} = 8 + 4\left( t_{1}^{2} + t_{2}^{2} + t_{1}t_{2} \right)

= 8+4{(t1+t2)2t1t2}8 + 4\left\{ \left( t_{1} + t_{2} \right)^{2} - t_{1}t_{2} \right\}

(t1+t2)2{t12t224]=4(t1t22)\left( t_{1} + t_{2} \right)^{2}\{ t_{1}^{2}t_{2}^{2} - 4\rbrack = - 4\left( t_{1}t_{2} - 2 \right)

t1t22=0t_{1}t_{2} - 2 = 0

t1t2=2t_{1}t_{2} = 2