Solveeit Logo

Question

Mathematics Question on Distance of a Point From a Line

If p and q are the lengths of perpendiculars from the origin to the lines x  cosθy  sinθ=k  cos2θx \space cos θ − y \space sin θ = k\space cos 2θ and x  secθ+y  cosecθ=kx \space sec θ + y\space cosec θ = k, respectively, prove that p2\+4q2=k2p^2 \+ 4q^2 = k^2

Answer

The equations of given lines are x  cosθ\-y  sinθ=k  cos2θ(1)x \space cos θ \- y \space sinθ = k \space cos 2θ … (1)

x  secθ+y  cosecθ=k(2)x\space secθ + y \space cosec θ= k … (2)
The perpendicular distance (d) of a line Ax+By+C=0Ax + By + C = 0 from a point (x1,y1)(x_1, y_1) is given by

d=Ax1+By1+CA2+B2d=\frac{\left|Ax_1+By_1+C\right|}{\sqrt{A^2+B^2}}
On comparing equation (1) to the general equation of line i.e., Ax+By+C=0Ax + By + C = 0, we obtain A=cosθ,B=sinθ,A = cosθ, B = -sinθ, and C=k  cos2θ.C = -k\space cos 2θ.

It is given that p is the length of the perpendicular from (0,0)(0, 0) to line (1).

p=A(0)+B(0)+CA2+B2∴ p=\frac{\left|A(0)+B(0)+C\right|}{\sqrt{A^2+B^2}}

=CA2+B2=\frac{\left|C\right|}{\sqrt{A^2+B^2}}

=kcos2θcos2θ+sin2θ=\frac{\left|-k cos 2θ\right|}{\sqrt{cos^2θ+sin^2θ}}

=kcos2θ....(3)=\left|-kcos2θ\right|....(3)

On comparing equation (2) to the general equation of line i.e., Ax+By+C=0Ax + By + C = 0, we obtain A=secθ,B=cosecθ,A = secθ, B = cosecθ, and C=k.C = -k.
It is given that q is the length of the perpendicular from (0,0)(0, 0) to line (2).

q=A(0)+B(0)+CA2+B2∴ q=\frac{\left|A(0)+B(0)+C\right|}{\sqrt{A^2+B^2}}

=CA2+B2=\frac{\left|C\right|}{\sqrt{A^2+B^2}}

=ksec2θ+cosec2θ........(4)=\frac{\left|-k\right|}{\sqrt {sec^2θ+cosec^2θ}}........(4)

From (3) and (4), we have
p2\+4q2=(kcos2θ)2+4(ksec2θ+cosec2θ)2p^2 \+ 4q^2 =\left(\left|-kcos2θ\right|\right)^2+4\left(\frac{\left|-k\right|}{\sqrt{sec^2θ+cosec^2θ}}\right)^2

=k2cos22θ+4k2(sec2θ+cosec2θ)=k^2cos^2 2θ+\frac{4k^2}{\left(sec^2θ+cosec^2θ\right)}

=k2cos22θ+4k2(1cos2θ+1sin2θ)=k^2cos^2 2θ+\frac{4k^2}{\left(\frac{1}{cos^2θ}+\frac{1}{sin^2θ}\right)}

=k2cos22θ+4k2(sin2θ+cos2θsin2θcos2θ)=k^2cos^2 2θ+\frac{4k^2}{\left(\frac{sin2θ+cos2θ}{sin^2θcos^2θ}\right)}

=k2cos22θ+4k2(1sin2θcos2θ)=k^2cos^2 2θ+\frac{4k^2}{\left(\frac{1}{sin^2θcos^2θ}\right)}

=k2cos22θ+4k2sin2θcos2θ=k^2cos^2 2θ+4k^2sin^2θcos^2θ

=k2cos22θ+k2sin22θ=k^2cos^2 2θ+k^2sin^2 2θ

=k2(cos22θ+sin22θ)=k^2(cos^2 2θ+sin^2 2θ)

=k2=k^2

Hence, we proved that p2+4q2=k2p ^2 + 4q ^2 = k^ 2.