Question
Mathematics Question on Maxima and Minima
If p and q are respectively the global maximum and global minimum of the function f(x)=x2e2x on the interval [−2,2] , then pe−4+qe4=
A
0
B
4e8
C
4
D
4e8+1
Answer
4
Explanation
Solution
Given, f(x)=x2e2x
Differentiating w.r.t. x, we get
f′(x)=2e2xx2+2xe2x=2e2x(x2+x)
⇒f′(x)=0⇒2e2x(x2+x)=0
⇒e2x=0 or x2+x=0⇒x=0,−1
So, maxima and minima can be attain at either of
−2,−1,0,2 as the function bound.
∴f(−2)=(−2)2e−4=4e−4
f(−1)=(−1)2e−2
f(0)=0
f(2)=(2)2e4=4e4
∴p=4e4 and q=0
Therefore, pe−4+qe4=4e4(e−4)+0=4e0
=4×1=4