Solveeit Logo

Question

Question: If p and q are perpendicular distances from origin to the straight lines \(x\sec \theta -y\csc \thet...

If p and q are perpendicular distances from origin to the straight lines xsecθycscθ=ax\sec \theta -y\csc \theta =a and xcosθ+ysinθ=acos2θx\cos \theta +y\sin \theta =a\cos 2\theta , then which of the following is correct ?
(a) 4p2+q2=a24{{p}^{2}}+{{q}^{2}}={{a}^{2}}
(b) p2+q2=a2{{p}^{2}}+{{q}^{2}}={{a}^{2}}
(c) p2+2q2=a2{{p}^{2}}+2{{q}^{2}}={{a}^{2}}
(d) 4p2+2q2=2a24{{p}^{2}}+2{{q}^{2}}=2{{a}^{2}}

Explanation

Solution

Hint: Use the formula for calculating the perpendicular distance from a point (x1,y1)\left( {{x}_{1}},{{y}_{1}} \right) to the line Ax+By+C=0Ax+By+C=0 i.e. given as Ax1+By1+CA2+B2\left| \dfrac{A{{x}_{1}}+B{{y}_{1}}+C}{\sqrt{{{A}^{2}}+{{B}^{2}}}} \right|. Convert secθ\sec \theta and cscθ\csc \theta to 1cosθ\dfrac{1}{\cos \theta } and 1sinθ\dfrac{1}{\sin \theta } respectively and now try to eliminate θ\theta and use sin2θ+cos2θ=1{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1.

Complete step-by-step solution -
We know the perpendicular distance of a line Ax+By+C=0Ax+By+C=0 by a general point (x1,y1)\left( {{x}_{1}},{{y}_{1}} \right) can be given by the relation
Perpendicular distance=Ax1+By1+CA2+B2=\left| \dfrac{A{{x}_{1}}+B{{y}_{1}}+C}{\sqrt{{{A}^{2}}+{{B}^{2}}}} \right| ……………………………………(i)
So, we have two different lines xsecθycscθ=ax\sec \theta -y\csc \theta =a and xcosθ+ysinθ=acos2θx\cos \theta +y\sin \theta =a\cos 2\theta and perpendicular distance of each lines from the origin are given as p and q respectively.
Hence, we can calculate the perpendicular distance of each line by equation (i) and can equate to the given distances p and q.
So, perpendicular distance from line 1 from origin (0,0)\left( 0,0 \right) can be given as
p=0(secθ)0(cscθ)a(secθ)2+(cscθ)2p=\left| \dfrac{0\left( \sec \theta \right)-0\left( \csc \theta \right)-a}{\sqrt{{{\left( \sec \theta \right)}^{2}}+{{\left( -\csc \theta \right)}^{2}}}} \right|
p=asec2θ+csc2θp=\left| \dfrac{-a}{\sqrt{{{\sec }^{2}}\theta +{{\csc }^{2}}\theta }} \right|
On squaring both sides, we can remove the modulus sign as the square of any number will never be negative. Hence, we get
p2=(asec2θ+csc2θ)2{{p}^{2}}={{\left( \dfrac{-a}{\sqrt{{{\sec }^{2}}\theta +{{\csc }^{2}}\theta }} \right)}^{2}}
p2=a2sec2θ+csc2θ{{p}^{2}}=\dfrac{{{a}^{2}}}{{{\sec }^{2}}\theta +{{\csc }^{2}}\theta }
Now, we can change secθ\sec \theta to cosθ\cos \theta by relation of secθ=1cosθ\sec \theta =\dfrac{1}{\cos \theta } and cscθ\csc \theta to sinθ\sin \theta by relation cscθ=1sinθ\csc \theta =\dfrac{1}{\sin \theta }.
Hence, we can simplify p2{{p}^{2}} as
p2=a2(1cos2θ+1sin2θ){{p}^{2}}=\dfrac{{{a}^{2}}}{\left( \dfrac{1}{{{\cos }^{2}}\theta }+\dfrac{1}{{{\sin }^{2}}\theta } \right)}
p2=a2sin2θ+cos2θsin2θcos2θ{{p}^{2}}=\dfrac{{{a}^{2}}}{\dfrac{{{\sin }^{2}}\theta +{{\cos }^{2}}\theta }{{{\sin }^{2}}\theta {{\cos }^{2}}\theta }}
Now, we can replace sin2θ+cos2θ{{\sin }^{2}}\theta +{{\cos }^{2}}\theta by 1 using the relation
sin2θ+cos2θ=1{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1
Hence, we get
p2=a21sin2θcos2θ{{p}^{2}}=\dfrac{{{a}^{2}}}{\dfrac{1}{{{\sin }^{2}}\theta {{\cos }^{2}}\theta }}
p2=a2sin2θcos2θ{{p}^{2}}={{a}^{2}}{{\sin }^{2}}\theta {{\cos }^{2}}\theta ….....................................................(ii)
Now, similarly we can get perpendicular distance of line xcosθ+ysinθ=acos2θx\cos \theta +y\sin \theta =a\cos 2\theta from origin (0,0)\left( 0,0 \right) by equation (i) and equating it to ‘q’. Hence, we get
q=0(cosθ)+0(sinθ)acos2θcos2θ+sin2θq=\left| \dfrac{0\left( \cos \theta \right)+0\left( \sin \theta \right)-a\cos 2\theta }{\sqrt{{{\cos }^{2}}\theta +{{\sin }^{2}}\theta }} \right|
q=acos2θcos2θ+sin2θ\Rightarrow q=\left| \dfrac{-a\cos 2\theta }{\sqrt{{{\cos }^{2}}\theta +{{\sin }^{2}}\theta }} \right|
Now, on squaring both sides, we get
q2=(acos2θ)2(cos2θ+sin2θ){{q}^{2}}=\dfrac{{{\left( -a\cos 2\theta \right)}^{2}}}{\left( \sqrt{{{\cos }^{2}}\theta +{{\sin }^{2}}\theta } \right)}
q2=a2cos22θ(cos2θ+sin2θ){{q}^{2}}=\dfrac{{{a}^{2}}{{\cos }^{2}}2\theta }{\left( {{\cos }^{2}}\theta +{{\sin }^{2}}\theta \right)}
Now, we can replace cos2θ+sin2θ{{\cos }^{2}}\theta +{{\sin }^{2}}\theta by 1 using the trigonometric identity given as cos2θ+sin2θ=1{{\cos }^{2}}\theta +{{\sin }^{2}}\theta =1
Hence, we can get value of q2{{q}^{2}} as
q2=a2cos22θ{{q}^{2}}={{a}^{2}}{{\cos }^{2}}2\theta …............................(iii)
Now, we know the trigonometric identity of cos2θ\cos 2\theta , given as
cos2θ=cos2θsin2θ\cos 2\theta ={{\cos }^{2}}\theta -{{\sin }^{2}}\theta ………………………………….(iv)
Hence, we can replace cos2θ\cos 2\theta by cos2θsin2θ{{\cos }^{2}}\theta -{{\sin }^{2}}\theta using equation (iv) in equation (iii) ; So, we get
q2=a2(cos2θ)2{{q}^{2}}={{a}^{2}}{{\left( \cos 2\theta \right)}^{2}}
q2=a2(cos2θsin2θ){{q}^{2}}={{a}^{2}}\left( {{\cos }^{2}}\theta -{{\sin }^{2}}\theta \right) …………………………..(v)
Hence, we can rewrite equation (v) by using algebraic identity (ab)2{{\left( a-b \right)}^{2}} given as
(ab)2=a2+b22ab{{\left( a-b \right)}^{2}}={{a}^{2}}+{{b}^{2}}-2ab
So, we get the value of q2{{q}^{2}} from equation (v) using the above algebraic identity. Hence, we get
q2=a2(cos4θ+sin4θ2sin2θcos2θ){{q}^{2}}={{a}^{2}}\left( {{\cos }^{4}}\theta +{{\sin }^{4}}\theta -2{{\sin }^{2}}\theta {{\cos }^{2}}\theta \right)
Now, add and subtract 2sin2θcos2θ2{{\sin }^{2}}\theta {{\cos }^{2}}\theta in the bracket of above equation. So, we get
q2=a2(cos4θ+sin4θ2sin2θcos2θ+2sin2θcos2θ2sin2θcos2θ){{q}^{2}}={{a}^{2}}\left( {{\cos }^{4}}\theta +{{\sin }^{4}}\theta -2{{\sin }^{2}}\theta {{\cos }^{2}}\theta +2{{\sin }^{2}}\theta {{\cos }^{2}}\theta -2{{\sin }^{2}}\theta {{\cos }^{2}}\theta \right)
q2=a2(cos4θ+sin4θ+2sin2θcos2θ4sin2θcos2θ)\Rightarrow {{q}^{2}}={{a}^{2}}\left( {{\cos }^{4}}\theta +{{\sin }^{4}}\theta +2{{\sin }^{2}}\theta {{\cos }^{2}}\theta -4{{\sin }^{2}}\theta {{\cos }^{2}}\theta \right)
q2=a2[(sin2θ)2+(cos2θ)2+2×sin2θ×cos2θ4sin2θcos2θ]\Rightarrow {{q}^{2}}={{a}^{2}}\left[ {{\left( {{\sin }^{2}}\theta \right)}^{2}}+{{\left( {{\cos }^{2}}\theta \right)}^{2}}+2\times {{\sin }^{2}}\theta \times {{\cos }^{2}}\theta -4{{\sin }^{2}}\theta {{\cos }^{2}}\theta \right]
Now, we can use algebraic identity of (a+b)2{{\left( a+b \right)}^{2}} to simplify the above equation, which is given as
(a+b)2=a2+b2+2ab{{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab
Hence, we get value of q2{{q}^{2}} as
q2=a2((sin2θ+cos2θ)24sin2θcos2θ){{q}^{2}}={{a}^{2}}\left( {{\left( {{\sin }^{2}}\theta +{{\cos }^{2}}\theta \right)}^{2}}-4{{\sin }^{2}}\theta {{\cos }^{2}}\theta \right)
Now, put sin2θ+cos2θ{{\sin }^{2}}\theta +{{\cos }^{2}}\theta as 1 using relation
sin2θ+cos2θ=1{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1
Hence, we get
q2=a2(14sin2θcos2θ){{q}^{2}}={{a}^{2}}\left( 1-4{{\sin }^{2}}\theta {{\cos }^{2}}\theta \right) ……………………………………….(vi)
Now, we can get value of sin2θcos2θ{{\sin }^{2}}\theta {{\cos }^{2}}\theta from the equation (ii),
p2=a2sin2θcos2θ{{p}^{2}}={{a}^{2}}{{\sin }^{2}}\theta {{\cos }^{2}}\theta
sin2θcos2θ=p2a2\Rightarrow {{\sin }^{2}}\theta {{\cos }^{2}}\theta =\dfrac{{{p}^{2}}}{{{a}^{2}}} ………………………………………..(vii)
Hence, we can replace sin2θcos2θ{{\sin }^{2}}\theta {{\cos }^{2}}\theta by p2a2\dfrac{{{p}^{2}}}{{{a}^{2}}} in the equation (vi). Hence, we get
q2=a2(14p2a2){{q}^{2}}={{a}^{2}}\left( 1-\dfrac{4{{p}^{2}}}{{{a}^{2}}} \right)
q2=a2(a24p2a2){{q}^{2}}={{a}^{2}}\left( \dfrac{{{a}^{2}}-4{{p}^{2}}}{{{a}^{2}}} \right)
q2=a24p2\Rightarrow {{q}^{2}}={{a}^{2}}-4{{p}^{2}}
q2+4p2=a2\Rightarrow {{q}^{2}}+4{{p}^{2}}={{a}^{2}}
Hence, option (A) is correct.

Note: Don’t get confused with the modulus sign with the perpendicular distance formula. Squaring both the sides will remove the modulus function.
One can use (a+b)2=(ab)2+4ab{{\left( a+b \right)}^{2}}={{\left( a-b \right)}^{2}}+4ab to simplify (cos2θsin2θ)2{{\left( {{\cos }^{2}}\theta -{{\sin }^{2}}\theta \right)}^{2}}. So, we get (cos2θ+sin2θ)2=(cos2θsin2θ)2+4cos2θsin2θ{{\left( {{\cos }^{2}}\theta +{{\sin }^{2}}\theta \right)}^{2}}={{\left( {{\cos }^{2}}\theta -{{\sin }^{2}}\theta \right)}^{2}}+4{{\cos }^{2}}\theta {{\sin }^{2}}\theta .
Calculation is an important part of the question as well. So, be careful with it as well.