Solveeit Logo

Question

Mathematics Question on Probability

If P(A) = 0.8, P(B) = 0.5 and P(B|A) = 0.4, find:

  1. P(A∩B)
  2. P(A|B)
  3. P(A∪B)
Answer

(i)(i) P(AB)=P(BA).P(A)P(A∩B) = P(B|A).P(A)

P(AB=0.4×0.8P(A∩B = 0.4\times0.8

P(AB)=0.3P(A∩B) = 0.3


(ii)(ii) P(AB)=P(AB)P(B)P(A|B)=\frac {P(A∩B)}{P(B)}

P(AB)=0.320.50P(A|B)=\frac {0.32}{0.50}

P(AB)=3250P(A|B)=\frac {32}{50}

P(AB)=0.64P(A|B)=0.64


(iii)(iii) P(AB)=P(A)+P(B)P(AB)P(A∪B)=P(A)+P(B)-P(A∩B)

P(AB)=0.8+0.50.32P(A∪B)=0.8+0.5 – 0.32

P(AB)=0.98P(A∪B)= 0.98