Question
Quantitative Aptitude Question on Properties of Numbers
If p2+q2−29=2pq−20=52−2pq , then the difference between the maximum and minimum possible value of (p3−q3)is
A
486
B
378
C
243
D
189
Answer
378
Explanation
Solution
Given that,
2pq−20=52−2pq
⇒4pq=72
⇒pq=18 ...... (1)
Now, p2+q2\-29=2pq−20
⇒p2+q2\-2pq=9
⇒(p−q)2=9
⇒(p−q)2=9
⇒p−q=±3
Also, p2+q2−29=2pq−20
⇒p2+q2=2pq+9
⇒p2+q2=2(18)+9
⇒p2+q2=45
Now, p3−q3=(p—q)(p2+pq+q2)
⇒p3−q3=(p−q)(45+18)
⇒p3−q3=(p−9)(63)
If we put p−q=−3
p3−q3=63(−3)
⇒p3−q3=−189
If we put p−q=3
p−q3=63(−3)
p3−q3=189
The difference =189−(−189)=189+189=378
So, the correct option is (B): 378.