Solveeit Logo

Question

Quantitative Aptitude Question on Properties of Numbers

If p2+q229=2pq20=522pqp^2+q^2-29=2pq-20=52-2pq , then the difference between the maximum and minimum possible value of (p3q3)(p^3-q^3 ) is

A

486

B

378

C

243

D

189

Answer

378

Explanation

Solution

Given that,
2pq20=522pq2pq - 20 = 52 - 2pq
4pq=72⇒ 4pq = 72
pq=18⇒ pq = 18 ...... (1)

Now, p2+q2\-29=2pq20p^2 + q^2 \- 29 = 2pq - 20
p2+q2\-2pq=9⇒ p^2 + q^2 \- 2pq = 9
(pq)2=9⇒ (p- q)^2 =9
(pq)2=9⇒ (p- q)^2 =\sqrt 9
pq=±3⇒ p-q=±3

Also, p2+q229=2pq20p^2 + q^2 - 29 = 2pq - 20
p2+q2=2pq+9⇒ p^2 + q^2 = 2pq + 9
p2+q2=2(18)+9⇒ p^2 + q^2 = 2(18) +9
p2+q2=45⇒ p^2 + q^2 = 45

Now, p3q3=(pq)(p2+pq+q2)p^3 - q^3 = (p—q) (p^2 + pq +q^2)
p3q3=(pq)(45+18)⇒ p^3 - q^3 = (p-q) (45 + 18)
p3q3=(p9)(63)⇒ p^3 - q^3 = (p - 9) (63)

If we put pq=3p-q = -3
p3q3=63(3)p^3 - q^3 = 63(-3)
p3q3=189⇒ p^3 - q^3= -189

If we put pq=3p-q = 3
pq3=63(3)p^ - q^3 = 63(-3)
p3q3=189p^3 - q^3 = 189

The difference =189(189)=189+189=378= 189 - (-189) = 189+189 = 378

So, the correct option is (B): 378378.