Solveeit Logo

Question

Question: If \[{{P}_{1}},{{P}_{2}},{{P}_{3}}\] ​ be the perpendicular from the points \[\left( {{m}^{2}},2m \r...

If P1,P2,P3{{P}_{1}},{{P}_{2}},{{P}_{3}} ​ be the perpendicular from the points (m2,2m),(mm,m+m)\left( {{m}^{2}},2m \right),\left( m{m}',m+{m}' \right)and (m2,2m)\left( {{{{m}'}}^{2}},2{m}' \right) respectively on the line xcosa+ysina+sin2acos2a=0x\cos a+y\sin a+\dfrac{{{\sin }^{2}}a}{{{\cos }^{2}}a}=0, then P1,P2,P3{{P}_{1}},{{P}_{2}},{{P}_{3}}​ are in
A. A.P.
B. G.P.
C. H.P.
D. None of these

Explanation

Solution

In order to find the solution of the given question that is if P1,P2,P3{{P}_{1}},{{P}_{2}},{{P}_{3}} ​ be the perpendicular from the points (m2,2m),(mm,m+m)\left( {{m}^{2}},2m \right),\left( m{m}',m+{m}' \right)and (m2,2m)\left( {{{{m}'}}^{2}},2{m}' \right) respectively on the line xcosa+ysina+sin2acos2a=0x\cos a+y\sin a+\dfrac{{{\sin }^{2}}a}{{{\cos }^{2}}a}=0, then P1,P2,P3{{P}_{1}},{{P}_{2}},{{P}_{3}}​ are in A.P./ G.P./H.P./ or none of these. Apply the formula of the perpendicular distance of a line ax+by+cax+by+c from the point (x,y)\left( x,y \right) is d=ax+by+ca2+b2d=\left| \dfrac{ax+by+c}{\sqrt{{{a}^{2}}+{{b}^{2}}}} \right|. Now use this formula to find the perpendicular distances P1{{P}_{1}}​: given by line xcosa+ysina+sin2acos2a=0x\cos a+y\sin a+\dfrac{{{\sin }^{2}}a}{{{\cos }^{2}}a}=0 from point (m2,2m)\left( {{m}^{2}},2m \right); P2{{P}_{2}}: given by line xcosa+ysina+sin2acos2a=0x\cos a+y\sin a+\dfrac{{{\sin }^{2}}a}{{{\cos }^{2}}a}=0 from point (mm,m+m)\left( m{m}',m+{m}' \right); P3{{P}_{3}}: given by line xcosa+ysina+sin2acos2a=0x\cos a+y\sin a+\dfrac{{{\sin }^{2}}a}{{{\cos }^{2}}a}=0 from point (m2,2m)\left( {{{{m}'}}^{2}},2{m}' \right). After this check for the conditions if distance P1,P2,P3{{P}_{1}},{{P}_{2}},{{P}_{3}} are in A.P. then the difference between any two consecutive terms will be constant. Then check for the conditions if distance P1,P2,P3{{P}_{1}},{{P}_{2}},{{P}_{3}} are in G.P. then any element after the first is obtained by multiplying the preceding element by a constant. To check for the conditions if distance P1,P2,P3{{P}_{1}},{{P}_{2}},{{P}_{3}} are in H.P. then the reciprocals of the terms of a sequence are in arithmetic progression.

Complete step by step solution:
According to the question, given line in the question is as follows:
xcosa+ysina+sin2acos2a=0...(1)x\cos a+y\sin a+\dfrac{{{\sin }^{2}}a}{{{\cos }^{2}}a}=0...\left( 1 \right)
We know that the perpendicular distance of a line ax+by+cax+by+c from the point (x,y)\left( x,y \right) is d=ax+by+ca2+b2d=\left| \dfrac{ax+by+c}{\sqrt{{{a}^{2}}+{{b}^{2}}}} \right|.
Therefore, P1{{P}_{1}}​ is the perpendicular distance of given line (1)\left( 1 \right) from point (m2,2m)\left( {{m}^{2}},2m \right) is as follows:

P1=ax1+by1+ca2+b2{{P}_{1}}=\left| \dfrac{a{{x}_{1}}+b{{y}_{1}}+c}{\sqrt{{{a}^{2}}+{{b}^{2}}}} \right|
P1=m2cosa+2msina+sin2acos2acos2a+sin2a\Rightarrow {{P}_{1}}=\left| \dfrac{{{m}^{2}}\cos a+2m\sin a+\dfrac{{{\sin }^{2}}a}{{{\cos }^{2}}a}}{\sqrt{{{\cos }^{2}}a+{{\sin }^{2}}a}} \right|
P1=m2cos3a+2msinacos2a+sin2acos2a+sin2a(cos2a)\Rightarrow {{P}_{1}}=\left| \dfrac{{{m}^{2}}{{\cos }^{3}}a+2m\sin a{{\cos }^{2}}a+{{\sin }^{2}}a}{\sqrt{{{\cos }^{2}}a+{{\sin }^{2}}a}\left( {{\cos }^{2}}a \right)} \right|
P1=m2cos3a+2msinacos2a+sin2a1(cos2a)\Rightarrow {{P}_{1}}=\left| \dfrac{{{m}^{2}}{{\cos }^{3}}a+2m\sin a{{\cos }^{2}}a+{{\sin }^{2}}a}{\sqrt{1}\left( {{\cos }^{2}}a \right)} \right|
P1=m2cos3a+2msinacos2a+sin2acos2a...(2)\Rightarrow {{P}_{1}}=\left| \dfrac{{{m}^{2}}{{\cos }^{3}}a+2m\sin a{{\cos }^{2}}a+{{\sin }^{2}}a}{{{\cos }^{2}}a} \right|...\left( 2 \right)
We know that the perpendicular distance of a line ax+by+cax+by+c from the point (x,y)\left( x,y \right) is d=ax+by+ca2+b2d=\left| \dfrac{ax+by+c}{\sqrt{{{a}^{2}}+{{b}^{2}}}} \right|.
Therefore,P2{{P}_{2}}​ is the perpendicular distance of given line (1)\left( 1 \right) from point (mm,m+m)\left( m{m}',m+{m}' \right)
P2=ax1+by1+ca2+b2{{P}_{2}}=\left| \dfrac{a{{x}_{1}}+b{{y}_{1}}+c}{\sqrt{{{a}^{2}}+{{b}^{2}}}} \right|
P2=mmcosa+msina+msina+sin2acos2acos2a+sin2a\Rightarrow {{P}_{2}}=\left| \dfrac{m{m}'\cos a+m\sin a+{m}'\sin a+\dfrac{{{\sin }^{2}}a}{{{\cos }^{2}}a}}{\sqrt{{{\cos }^{2}}a+{{\sin }^{2}}a}} \right|
P2=mmcos3a+msinacos2a+msinacos2a+sin2acos2a+sin2a(cos2a)\Rightarrow {{P}_{2}}=\left| \dfrac{m{m}'{{\cos }^{3}}a+m\sin a{{\cos }^{2}}a+{m}'\sin a{{\cos }^{2}}a+{{\sin }^{2}}a}{\sqrt{{{\cos }^{2}}a+{{\sin }^{2}}a}\left( {{\cos }^{2}}a \right)} \right|
P2=mmcos3a+msinacos2a+msinacos2a+sin2a1(cos2a)\Rightarrow {{P}_{2}}=\left| \dfrac{m{m}'{{\cos }^{3}}a+m\sin a{{\cos }^{2}}a+{m}'\sin a{{\cos }^{2}}a+{{\sin }^{2}}a}{\sqrt{1}\left( {{\cos }^{2}}a \right)} \right|
P2=mmcos3a+msinacos2a+msinacos2a+sin2acos2a...(3)\Rightarrow {{P}_{2}}=\left| \dfrac{m{m}'{{\cos }^{3}}a+m\sin a{{\cos }^{2}}a+{m}'\sin a{{\cos }^{2}}a+{{\sin }^{2}}a}{{{\cos }^{2}}a} \right|...\left( 3 \right)
We know that the perpendicular distance of a line ax+by+cax+by+c from the point (x,y)\left( x,y \right) is d=ax+by+ca2+b2d=\left| \dfrac{ax+by+c}{\sqrt{{{a}^{2}}+{{b}^{2}}}} \right|.
Therefore,P3{{P}_{3}}​ is the perpendicular distance of given line (1)\left( 1 \right) from point (m2,2m)\left( {{{{m}'}}^{2}},2{m}' \right)
P3=ax1+by1+ca2+b2{{P}_{3}}=\left| \dfrac{a{{x}_{1}}+b{{y}_{1}}+c}{\sqrt{{{a}^{2}}+{{b}^{2}}}} \right|
P3=m2cosa+2msina+sin2acos2acos2a+sin2a\Rightarrow {{P}_{3}}=\left| \dfrac{{{{{m}'}}^{2}}\cos a+2{m}'\sin a+\dfrac{{{\sin }^{2}}a}{{{\cos }^{2}}a}}{\sqrt{{{\cos }^{2}}a+{{\sin }^{2}}a}} \right|
P3=m2cos3a+2msinacos2a+sin2acos2a+sin2a(cos2a)\Rightarrow {{P}_{3}}=\left| \dfrac{{{{{m}'}}^{2}}{{\cos }^{3}}a+2{m}'\sin a{{\cos }^{2}}a+{{\sin }^{2}}a}{\sqrt{{{\cos }^{2}}a+{{\sin }^{2}}a}\left( {{\cos }^{2}}a \right)} \right|
P3=m2cos3a+2msinacos2a+sin2a1(cos2a)\Rightarrow {{P}_{3}}=\left| \dfrac{{{{{m}'}}^{2}}{{\cos }^{3}}a+2{m}'\sin a{{\cos }^{2}}a+{{\sin }^{2}}a}{\sqrt{1}\left( {{\cos }^{2}}a \right)} \right|
P3=m2cos3a+2msinacos2a+sin2acos2a...(4)\Rightarrow {{P}_{3}}=\left| \dfrac{{{{{m}'}}^{2}}{{\cos }^{3}}a+2{m}'\sin a{{\cos }^{2}}a+{{\sin }^{2}}a}{{{\cos }^{2}}a} \right|...\left( 4 \right)
Now, checking for the conditions if distance P1,P2,P3{{P}_{1}},{{P}_{2}},{{P}_{3}} are in A.P. then the difference between any two consecutive terms will be constant. But this does not satisfy with P1,P2,P3{{P}_{1}},{{P}_{2}},{{P}_{3}}. Therefore, P1,P2,P3{{P}_{1}},{{P}_{2}},{{P}_{3}} are not in A.P.
Now check for the conditions if distance P1,P2,P3{{P}_{1}},{{P}_{2}},{{P}_{3}} are in G.P. then any element after the first is obtained by multiplying the preceding element by a constant.
We can clearly see from the equation (2)\left( 2 \right), (3)\left( 3 \right) and (4)\left( 4 \right), we get:
P22=P1P3{{P}_{2}}^{2}={{P}_{1}}{{P}_{3}}
Hence, we can write P1,P2,P3{{P}_{1}},{{P}_{2}},{{P}_{3}} in G.P. form.
Therefore, P1,P2,P3{{P}_{1}},{{P}_{2}},{{P}_{3}} are in G.P.

So, the correct answer is “Option B”.

Note: Students get confused between the concepts of A.P. and G.P., its important to remember that a sequence is in A.P. if the difference between any two consecutive terms will be constant and a sequence is in G.P. then any element after the first is obtained by multiplying the preceding element by a constant.