Solveeit Logo

Question

Mathematics Question on Straight lines

If P1P_1 and P2P_2 be the length of perpendiculars from the origin upon the straight lines xsecθ+ycosecθ=ax \sec \theta + y cosec \theta = a and xcosθysinθ=acos2θx \cos \theta - y \sin \theta = a \cos 2 \theta respectively, then the value of 4P12+P224P_1{^2} + P_2{^2}.

A

a2a^2

B

2a2 2 a^2

C

a2/2a^2/ 2

D

3a23a^2

Answer

a2a^2

Explanation

Solution

We have P1P_1 = length of perpendicular from (0,0)(0, 0) on
xsecθ+ycosecθ=ax \sec \theta + y \cos ec \theta = a
i.e. P1=asec2θ+cosec2θ=asinθcosθP_{1} = \left|\frac{a}{\sqrt{\sec^{2} \theta +\cos ec^{2} \theta}}\right| = \left|a \sin\theta \cos\theta\right|
=a2sin2θ2P1=asin2θ= \left|\frac{a}{2} \sin 2\theta\right| 2P_{1} = \left|a \sin 2 \theta\right|
P2P_2= Length of the perpendicular from (0,0)(0, 0) on
xcosθysinθ=acos2θx \cos \theta -y \sin\theta =a \cos2\theta
P2=acos2θcos2θ+sin2θ=acos2θP_{2} = \left|\frac{a \cos 2 \theta}{\sqrt{\cos^{2} \theta+\sin^{2} \theta}}\right| = \left|a \cos2\theta\right|
Now, 4P12+P22=a2sin22θ+a2cos22θ=a2.4P_{1} ^{2} + P_{2 } ^{2}= a^{2} \sin^{2} 2 \theta + a^{2} \cos^{2} 2\theta = a^{2}.