Solveeit Logo

Question

Mathematics Question on Three Dimensional Geometry

If P=(0,1,2),Q=(4,2,1),O=(0,0,0),P=(0,1,2),\,\,Q=(4,-2,1),O=(0,0,0), then POQ\angle POQ is equal to

A

π6\frac{\pi }{6}

B

π4\frac{\pi }{4}

C

π3\frac{\pi }{3}

D

π2\frac{\pi }{2}

Answer

π2\frac{\pi }{2}

Explanation

Solution

Direction ratios of OP=(00,10,20)=(0,1,2)OP=(0-0,\,1-0,\,\,2-0)=(0,1,2) Direction ratios of
OQ=(40,20,10)=(4,2,1)OQ=(4-0,-2-0,1-0)=(4,-2,1)
Let POQ=θ,\angle POQ=\theta ,
then cosθ=a1a2+b1b2+c1c2a12+b12+c12a22+b22+c22\cos \theta =\frac{{{a}_{1}}{{a}_{2}}+{{b}_{1}}{{b}_{2}}+{{c}_{1}}{{c}_{2}}}{\sqrt{a_{1}^{2}+b_{1}^{2}+c_{1}^{2}}\sqrt{a_{2}^{2}+b_{2}^{2}+c_{2}^{2}}}
\Rightarrow cosθ=02×1+2×10+1+416+4+1\cos \theta =\frac{0-2\times 1+2\times 1}{\sqrt{0+1+4}\sqrt{16+4+1}}
=02+2521=0=\frac{0-2+2}{\sqrt{5}\sqrt{21}}=0
\Rightarrow θ=π2\theta =\frac{\pi }{2}
\therefore POQ=π2\angle POQ=\frac{\pi }{2}