Solveeit Logo

Question

Question: If \(P = (0,1,0)\) and \(Q = (0,0,1)\) then the projection of \(PQ\) on the plane \(x + y + z = 3\) ...

If P=(0,1,0)P = (0,1,0) and Q=(0,0,1)Q = (0,0,1) then the projection of PQPQ on the plane x+y+z=3x + y + z = 3 is

A. 22

B. 2\sqrt 2

C. 33

D. 3\sqrt 3

Explanation

Solution

Hint : Projection is the length on a base that is formed by a line due to perpendicular light falling on the given line. Here P=(0,1,0)P = (0,1,0) and Q=(0,0,1)Q = (0,0,1) is given so find out the vector PQ\overrightarrow {PQ} and use the projection method of the vector using the dot-product.

Complete step-by-step answer :

P=(0,1,0)P = (0,1,0) and Q=(0,0,1)Q = (0,0,1) asking about the projection of PQPQ on the plane x+y+z=3x + y + z = 3 .

Since position vector of P=(0,1,0)P = (0,1,0) and Q=(0,0,1)Q = (0,0,1)

Now, find PQ=QP\overrightarrow {PQ} = \overrightarrow Q - \overrightarrow P

PQ=(00)i^+(01)j^+(10)k^\therefore \overrightarrow {PQ} = (0 - 0)\widehat i + (0 - 1)\widehat j + (1 - 0)\widehat k

=j^+k^= - \widehat j + \widehat k

So, now, find out the magnitude of vector PQ\overrightarrow {PQ}

PQ=(1)2+(1)2=2\therefore \left| {\overrightarrow {PQ} } \right| = \sqrt {{{( - 1)}^2} + {{(1)}^2}} = \sqrt 2

Now, equation of plane is given x+y+z=3x + y + z = 3 so, write the

Normal vector n=i+j+k\overrightarrow n = \overrightarrow i + \overrightarrow j + \overrightarrow k

Also find magnitude n=(1)2+(1)2+(1)2=3\left| {\overrightarrow n } \right| = \sqrt {{{(1)}^2} + {{(1)}^2} + {{(1)}^2}} = \sqrt 3

Now, taking dot product of PQ\overrightarrow {PQ} with n\overrightarrow n , then

PQn=(j^+k^)(i+j^+k^)\because \overrightarrow {PQ} \cdot \overrightarrow n = ( - \widehat j + \widehat k) \cdot (i + \widehat j + \widehat k)

PQncosθ=1+1\Rightarrow \left| {\overrightarrow {PQ} } \right|\left| {\overrightarrow n } \right|\cos \theta = - 1 + 1

23cosθ=0\Rightarrow \sqrt 2 \sqrt 3 \cos \theta = 0

cosθ=0\Rightarrow \cos \theta = 0

θ=π2\therefore \theta = \dfrac{\pi }{2}

Now, finally calculate the projection of PQ\overrightarrow {PQ} on the plane x+y+z=3x + y + z = 3

\therefore Projection = PQ×cos(90θ)\left| {\overrightarrow {PQ} } \right|\times \cos (90 - \theta )

=2sinθ(θ=π2) = \sqrt 2 \sin \theta (\because \theta = \dfrac{\pi }{2})

=2×1= \sqrt 2 \times 1

=2= \sqrt 2 units.

Hence, the projection of PQPQ on the plane x+y+z=3x + y + z = 3 is 2\sqrt 2 units.

So, the correct answer is “Option B”.

Note : When we take dot product of PQ\overrightarrow {PQ} with normal vector n\overrightarrow n then the angle that is formed is with the normal vector n^\widehat n but when we find with projection with plane then the value of angle of PQ\overrightarrow {PQ} with plane be (90θ)(90 - \theta ) . So, a student should not be confused with these angles.