Solveeit Logo

Question

Question: If P = (0, 1, 0), Q =(0, 0, 1), then projection of PQ on the plane \(x + y + z = 3\) is...

If P = (0, 1, 0), Q =(0, 0, 1), then projection of PQ on the plane x+y+z=3x + y + z = 3 is

A

3\sqrt { 3 }

B

3

C

2\sqrt { 2 }

D

2

Answer

2\sqrt { 2 }

Explanation

Solution

Given plane is x+y+z3=0x + y + z - 3 = 0 . From point P and Q draw PM and QN perpendicular on the given plane and QR ⊥ MP.

MP=0+1+0312+12+12=23| M P | = \left| \frac { 0 + 1 + 0 - 3 } { \sqrt { 1 ^ { 2 } + 1 ^ { 2 } + 1 ^ { 2 } } } \right| = \frac { 2 } { \sqrt { 3 } }

NQ=23| N Q | = \frac { 2 } { \sqrt { 3 } } PQ=(00)2+(01)2+(10)2=2| P Q | = \sqrt { ( 0 - 0 ) ^ { 2 } + ( 0 - 1 ) ^ { 2 } + ( 1 - 0 ) ^ { 2 } } = \sqrt { 2 }

RP=MPMR=MPNQ=0| R P | = | M P | - | M R | = | M P | - | N Q | = 0

(i.e. R and P are the same point)

NM=QR=PQ2RP2=(2)20=2| N M | = | Q R | = \sqrt { P Q ^ { 2 } - R P ^ { 2 } } = \sqrt { ( \sqrt { 2 } ) ^ { 2 } - 0 } = \sqrt { 2 }