Solveeit Logo

Question

Question: If \(\overset{\rightarrow}{x}\) and \(\overset{\rightarrow}{y}\) are two non-collinear vectors and A...

If x\overset{\rightarrow}{x} and y\overset{\rightarrow}{y} are two non-collinear vectors and ABC is a triangle with sides a, b, c satisfying (20a – 15b)

x\overset{\rightarrow}{x} + (15b – 12c) y\overset{\rightarrow}{y} + (12c – 20a) (x\overset{\rightarrow}{x}y\overset{\rightarrow}{y}) = 0. Then DABC is :

A

An acute angled

B

An obtuse angled

C

A right angled

D

Isosceles

Answer

A right angled

Explanation

Solution

x\overset{\rightarrow}{x},y\overset{\rightarrow}{y} and x\overset{\rightarrow}{x}×y\overset{\rightarrow}{y} are non-coplanar vectors

20a = 15b = 12c

a3\frac{a}{3}= b4\frac{b}{4} = c5\frac{c}{5}

c2 = a2 + b2

Hence right angled triangle.