Solveeit Logo

Question

Question: If \(|{\overset{\rightarrow}{V}}_{1} + {\overset{\rightarrow}{V}}_{2}| = |{\overset{\rightarrow}{V}}...

If V1+V2=V1V2|{\overset{\rightarrow}{V}}_{1} + {\overset{\rightarrow}{V}}_{2}| = |{\overset{\rightarrow}{V}}_{1} - {\overset{\rightarrow}{V}}_{2}|and V2V_{2} is finite, then

A

V1V_{1} is parallel to V2V_{2}

B

V1=V2{\overset{\rightarrow}{V}}_{1} = {\overset{\rightarrow}{V}}_{2}

C

V1V_{1} and V2V_{2} are mutually perpendicular

D

V1=V2|{\overset{\rightarrow}{V}}_{1}| = |{\overset{\rightarrow}{V}}_{2}|

Answer

V1V_{1} and V2V_{2} are mutually perpendicular

Explanation

Solution

According to problem V1+V26mu=6muV1V2|{\overrightarrow{V}}_{1} + {\overrightarrow{V}}_{2}|\mspace{6mu} = \mspace{6mu}|{\overrightarrow{V}}_{1} - {\overrightarrow{V}}_{2}|

Vnet6mu=6muVnet|{\overrightarrow{V}}_{\text{net}}|\mspace{6mu} = \mspace{6mu}|V^{{\overrightarrow{'}}_{\text{net}}}

So V1V_{1} and V2V_{2} will be mutually perpendicular.