Solveeit Logo

Question

Question: If \|\(\overset{\rightarrow}{A}\)+\(\overset{\rightarrow}{B}\)\| = \|\(\overset{\rightarrow}{A}\)\| ...

If |A\overset{\rightarrow}{A}+B\overset{\rightarrow}{B}| = |A\overset{\rightarrow}{A}| = |B\overset{\rightarrow}{B}|, then the angle between A\overset{\rightarrow}{A}and B\overset{\rightarrow}{B}is-

A

(a) 90090^{0}

A

(b) 1200120^{0}

A

(c) 000^{0}

A

(d) 60060^{0}

Explanation

Solution

(d)

|A\overset{\rightarrow}{A}+B\overset{\rightarrow}{B}| =A2+B2+2ABcosθ\sqrt{A^{2} + B^{2} + 2AB\cos\theta}

Let here |A\overset{\rightarrow}{A}+B\overset{\rightarrow}{B}| = |A\overset{\rightarrow}{A}| =B\overset{\rightarrow}{B}| = R

So R2 = R2 + R2 + 2R2 cosq