Solveeit Logo

Question

Question: If \(\overset{\rightarrow}{A} \times \overset{\rightarrow}{B} = \overset{\rightarrow}{C},\) then whi...

If A×B=C,\overset{\rightarrow}{A} \times \overset{\rightarrow}{B} = \overset{\rightarrow}{C}, then which of the following statements is wrong-

A

CA\overset{\rightarrow}{C}\bot\overset{\rightarrow}{A}

B

CB\overset{\rightarrow}{C}\bot\overset{\rightarrow}{B}

C

C(A+B)\overset{\rightarrow}{C}\bot(\overset{\rightarrow}{A} + \overset{\rightarrow}{B})

D

C(A×B)\overset{\rightarrow}{C}\bot(\overset{\rightarrow}{A} \times \overset{\rightarrow}{B})

Answer

C(A×B)\overset{\rightarrow}{C}\bot(\overset{\rightarrow}{A} \times \overset{\rightarrow}{B})

Explanation

Solution

From the property of vector product, is perpendicular to both A\overset{\rightarrow}{A} and B\overset{\rightarrow}{B} and (A+B)(\overset{\rightarrow}{A} + \overset{\rightarrow}{B}) vector also, must lie in the plane formed by vector A\overset{\rightarrow}{A} and B\overset{\rightarrow}{B}. ThusC\overset{\rightarrow}{C}must be perpendicular to (A+B)(\overset{\rightarrow}{A} + \overset{\rightarrow}{B}) also but the cross product (A×B)(\overset{\rightarrow}{A} \times \overset{\rightarrow}{B}) gives a vector C\overset{\rightarrow}{C} which cannot be perpendicular to itself. Thus the last statement is wrong.