Solveeit Logo

Question

Question: If \(|\overset{\rightarrow}{A} \times \overset{\rightarrow}{B}|\) = \(\sqrt { 3 }\) \(\overset{\righ...

If A×B|\overset{\rightarrow}{A} \times \overset{\rightarrow}{B}| = 3\sqrt { 3 } A.B\overset{\rightarrow}{A}.\overset{\rightarrow}{B} then the value of A+B|\overset{\rightarrow}{A} + \overset{\rightarrow}{B}| is -

A

(A2 + B2 +3\sqrt{3}AB)1/2

B

(A2 + B2 + AB)1/2

C

(A2+B2+AB3)1/2\left( A^{2} + B^{2} + \frac{AB}{\sqrt{3}} \right)^{1/2}

D

A + B

Answer

(A2 + B2 + AB)1/2

Explanation

Solution

Given that A×B|\overset{\rightarrow}{A} \times \overset{\rightarrow}{B}| = 3\sqrt { 3 } A\overset{\rightarrow}{A}.B\overset{\rightarrow}{B}

AB sin q =3\sqrt{3} AB cosq

Ž tan q =3\sqrt{3}

or q = π3\frac{\pi}{3}

\A+B|\overset{\rightarrow}{A} + \overset{\rightarrow}{B}|

=A2+B2+2ABcosπ/3\sqrt{A^{2} + B^{2} + 2AB\cos\pi/3}

=A2+B2+AB= \sqrt{A^{2} + B^{2} + AB}