Solveeit Logo

Question

Question: If \(\overset{\rightarrow}{a}\), \(\overset{\rightarrow}{b}\), \(\overset{\rightarrow}{c}\) are thre...

If a\overset{\rightarrow}{a}, b\overset{\rightarrow}{b}, c\overset{\rightarrow}{c} are three non-coplanar vector p,q,r\overset{\rightarrow}{p},\overset{\rightarrow}{q},\overset{\rightarrow}{r} and are reciprocal vectors, then (la+mb+nc)\left( \overset{\rightarrow}{\mathcal{l}a} + \overset{\rightarrow}{mb} + \overset{\rightarrow}{nc} \right). (lp+mq+nr)\left( \overset{\rightarrow}{\mathcal{l}p} + \overset{\rightarrow}{mq} + \overset{\rightarrow}{nr} \right) is equal to-

A

l2 + m2 + n2

B

lm + mn + nl

C

0

D

None of these

Answer

l2 + m2 + n2

Explanation

Solution

The vectors reciprocal to a\overset{\rightarrow}{a}, b\overset{\rightarrow}{b}, c\overset{\rightarrow}{c}are given by

p\overset{\rightarrow}{p} = b×c(abc)\frac{\overset{\rightarrow}{b} \times \overset{\rightarrow}{c}}{(\overset{\rightarrow}{a}\overset{\rightarrow}{b}\overset{\rightarrow}{c})}, c×a(abc)\frac{\overset{\rightarrow}{c} \times \overset{\rightarrow}{a}}{(\overset{\rightarrow}{a}\overset{\rightarrow}{b}\overset{\rightarrow}{c})}, a×b(abc)\frac{\overset{\rightarrow}{a} \times \overset{\rightarrow}{b}}{(\overset{\rightarrow}{a}\overset{\rightarrow}{b}\overset{\rightarrow}{c})}= so that

a\overset{\rightarrow}{a}. p\overset{\rightarrow}{p}= 1, a\overset{\rightarrow}{a} . q\overset{\rightarrow}{q}= a\overset{\rightarrow}{a} . r\overset{\rightarrow}{r} = 0, b\overline{b}. q\overline{q}= 1, c\overset{\rightarrow}{c} . q\overline{q}= a\overset{\rightarrow}{a}. q\overset{\rightarrow}{q}

= 0, c.r\overline{c}.\overline{r} = 1, c.p\overline{c}.\overline{p} = c.r\overline{c}.\overline{r} = 0

This gives (a\overset{\rightarrow}{a} + mb\overset{\rightarrow}{b}+ nc\overset{\rightarrow}{c}). (lp\overset{\rightarrow}{p}+ mq\overset{\rightarrow}{q} + nr\overset{\rightarrow}{r})

= l2 + m2 + n2.