Solveeit Logo

Question

Question: If \(\overset{\rightarrow}{A} = 3\mathbf{i} + \mathbf{j} + 2\mathbf{k}\) and \(\overset{\rightarrow}...

If A=3i+j+2k\overset{\rightarrow}{A} = 3\mathbf{i} + \mathbf{j} + 2\mathbf{k} and B=2i2j+4k\overset{\rightarrow}{B} = 2\mathbf{i} - 2\mathbf{j} + 4\mathbf{k} and θ is the angle between A\overset{\rightarrow}{A} and B,\overset{\rightarrow}{B}, then the value of sinθ\sin\theta is

A

27\frac{2}{\sqrt{7}}

B

27\sqrt{\frac{2}{7}}

C

47\frac{4}{\sqrt{7}}

D

37\frac{3}{\sqrt{7}}

Answer

27\frac{2}{\sqrt{7}}

Explanation

Solution

cosθ=A.BAB=62+814×24\cos\theta = \frac{\overset{\rightarrow}{A}.\overset{\rightarrow}{B}}{|\overset{\rightarrow}{A}||\overset{\rightarrow}{B}|} = \frac{6 - 2 + 8}{\sqrt{14} \times \sqrt{24}}

cosθ=1214×24=37\cos\theta = \frac{12}{\sqrt{14} \times \sqrt{24}} = \sqrt{\frac{3}{7}}, sinθ=27\therefore\sin\theta = \frac{2}{\sqrt{7}}.