Solveeit Logo

Question

Question: If \[\overset{\to }{\mathop{A}}\,=3i+j+2k\] and \[\overset{\to }{\mathop{B}}\,=2i-2j+4k\], \[\theta ...

If A=3i+j+2k\overset{\to }{\mathop{A}}\,=3i+j+2k and B=2i2j+4k\overset{\to }{\mathop{B}}\,=2i-2j+4k, θ\theta is the angle between the two vectors then sinθ\sin \theta is equal to
A.23\dfrac{2}{3}
B.23\dfrac{2}{\sqrt{3}}
C.27\dfrac{2}{\sqrt{7}}
D.213\dfrac{2}{\sqrt{13}}

Explanation

Solution

In this we have to find the angle between the given two vectors and we have to find the value of sinθ\sin \theta from the angle between them. We know that the formula for the angle between two vectors is cosθ=abab\cos \theta =\dfrac{\overset{\to }{\mathop{a}}\,\cdot \overset{\to }{\mathop{b}}\,}{\left| \overset{\to }{\mathop{a}}\, \right|\left| \overset{\to }{\mathop{b}}\, \right|}. We can find the value of the cosine from the formula, we can then substitute the cosine value in the formula sinθ=1cos2θ\sin \theta =\sqrt{1-{{\cos }^{2}}\theta }, to get the value of sinθ\sin \theta .

Complete step by step answer:
Here we have to find the value of sinθ\sin \theta from the given two vectors,
We know that the given two vectors are,
A=3i+j+2k\overset{\to }{\mathop{A}}\,=3i+j+2k and B=2i2j+4k\overset{\to }{\mathop{B}}\,=2i-2j+4k
We can now write the vectors in the form,
a=3i+j+2k\overset{\to }{\mathop{a}}\,=3\overset{\wedge }{\mathop{i}}\,+\overset{\wedge }{\mathop{j}}\,+2\overset{\wedge }{\mathop{k}}\,
b=2i2j+4k\overset{\to }{\mathop{b}}\,=2\overset{\wedge }{\mathop{i}}\,-2\overset{\wedge }{\mathop{j}}\,+4\overset{\wedge }{\mathop{k}}\,
We also know that the formula for the angle between two vectors is
cosθ=abab\cos \theta =\dfrac{\overset{\to }{\mathop{a}}\,\cdot \overset{\to }{\mathop{b}}\,}{\left| \overset{\to }{\mathop{a}}\, \right|\left| \overset{\to }{\mathop{b}}\, \right|}
We can now substitute the vector values in the above formula and we can write the determinant in denominator as,
cosθ=(3i+j+2k)(2i2j+4k)32+12+22×22+(2)2+42\Rightarrow \cos \theta =\dfrac{\left( 3\overset{\wedge }{\mathop{i}}\,+\overset{\wedge }{\mathop{j}}\,+2\overset{\wedge }{\mathop{k}}\, \right)\cdot \left( 2\overset{\wedge }{\mathop{i}}\,-2\overset{\wedge }{\mathop{j}}\,+4\overset{\wedge }{\mathop{k}}\, \right)}{\sqrt{{{3}^{2}}+{{1}^{2}}+{{2}^{2}}}\times \sqrt{{{2}^{2}}+{{\left( -2 \right)}^{2}}+{{4}^{2}}}}
cosθ=(3i)(2i)×(j)(2j)×(2k)(4k)32+12+22×22+(2)2+42\Rightarrow \cos \theta =\dfrac{\left( 3\overset{\wedge }{\mathop{i}}\, \right)\left( 2\overset{\wedge }{\mathop{i}}\, \right)\times \left( \overset{\wedge }{\mathop{j}}\, \right)\left( -2\overset{\wedge }{\mathop{j}}\, \right)\times \left( 2\overset{\wedge }{\mathop{k}}\, \right)\left( 4\overset{\wedge }{\mathop{k}}\, \right)}{\sqrt{{{3}^{2}}+{{1}^{2}}+{{2}^{2}}}\times \sqrt{{{2}^{2}}+{{\left( -2 \right)}^{2}}+{{4}^{2}}}}
i.i=j.j=k.k=1,i.j=j.k=k.i=0\because \overset{\wedge }{\mathop{i}}\,. \overset{\wedge }{\mathop{i}}\,=\overset{\wedge }{\mathop{j}}\,. \overset{\wedge }{\mathop{j}}\,=\overset{\wedge }{\mathop{k}}\,. \overset{\wedge }{\mathop{k}}\,=1,\overset{\wedge }{\mathop{i}}\,. \overset{\wedge }{\mathop{j}}\,=\overset{\wedge }{\mathop{j}}\,. \overset{\wedge }{\mathop{k}}\,=\overset{\wedge }{\mathop{k}}\,. \overset{\wedge }{\mathop{i}}\,=0
We can now simplify the above step, we get
cosθ=62+89+1+44+4+16\Rightarrow \cos \theta =\dfrac{6-2+8}{\sqrt{9+1+4}\sqrt{4+4+16}}
We can now simplify the above step further, we get
cosθ=121424=321\Rightarrow \cos \theta =\dfrac{12}{\sqrt{14}\sqrt{24}}=\dfrac{3}{\sqrt{21}}
We know that sinθ=1cos2θ\sin \theta =\sqrt{1-{{\cos }^{2}}\theta }, we can now substitute the above cosine value in this formula, we get
sinθ=1(321)2\Rightarrow \sin \theta =\sqrt{1-{{\left( \dfrac{3}{\sqrt{21}} \right)}^{2}}}
We can now simplify the above step, we get

sinθ=1921=1221=47=27\Rightarrow \sin \theta =\sqrt{1-\dfrac{9}{21}}=\sqrt{\dfrac{12}{21}}=\sqrt{\dfrac{4}{7}}=\dfrac{2}{\sqrt{7}}

So, the correct answer is “Option C”.

Note: We should always remember that the formula to find the angle between two vectors is cosθ=a×bab\cos \theta =\dfrac{\overset{\to }{\mathop{a}}\,\times \overset{\to }{\mathop{b}}\,}{\left| \overset{\to }{\mathop{a}}\, \right|\left| \overset{\to }{\mathop{b}}\, \right|}, we should also remember that general vector formula such as i.i=j.j=k.k=1,i.j=j.k=k.i=0 \overset{\wedge }{\mathop{i}}\,. \overset{\wedge }{\mathop{i}}\,=\overset{\wedge }{\mathop{j}}\,. \overset{\wedge }{\mathop{j}}\,=\overset{\wedge }{\mathop{k}}\,. \overset{\wedge }{\mathop{k}}\,=1,\overset{\wedge }{\mathop{i}}\,. \overset{\wedge }{\mathop{j}}\,=\overset{\wedge }{\mathop{j}}\,. \overset{\wedge }{\mathop{k}}\,=\overset{\wedge }{\mathop{k}}\,. \overset{\wedge }{\mathop{i}}\,=0 We should also remember some trigonometric conversions such as sinθ=1cos2θ\sin \theta =\sqrt{1-{{\cos }^{2}}\theta } to find the required answer.