Solveeit Logo

Question

Question: If \(\overrightarrow{F}\) is the force acting on a particle having position vector \(\overrightarrow...

If F\overrightarrow{F} is the force acting on a particle having position vector r\overrightarrow{r} and τ\overrightarrow{\tau} be the torque of this force about the origin, then

A

r.τ>0andF.τ0\overrightarrow{r}.\overrightarrow{\tau} > 0andF.\overrightarrow{\tau} \neq 0

B

r.τ=0andF.τ=0\overrightarrow{r}.\overrightarrow{\tau} = 0andF.\overrightarrow{\tau} = 0

C

r.τ=0andF.τ0\overrightarrow{r}.\overrightarrow{\tau} = 0andF.\overrightarrow{\tau} \neq 0

D

r.τ0andF.τ=0\overrightarrow{r}.\overrightarrow{\tau} \neq 0andF.\overrightarrow{\tau} = 0

Answer

r.τ=0andF.τ=0\overrightarrow{r}.\overrightarrow{\tau} = 0andF.\overrightarrow{\tau} = 0

Explanation

Solution

Torque is always perpendicular to F\overset{\rightarrow}{F}as well as r.\overset{\rightarrow}{r}.

r.τ=0\therefore\overset{\rightarrow}{r}.\overset{\rightarrow}{\tau} = 0as well as F.τ=0\overset{\rightarrow}{F}.\overset{\rightarrow}{\tau} = 0