Solveeit Logo

Question

Question: If \(|\overrightarrow{A} \times \overrightarrow{B}| = \sqrt{3}\overrightarrow{A}.\overrightarrow{B},...

If A×B=3A.B,|\overrightarrow{A} \times \overrightarrow{B}| = \sqrt{3}\overrightarrow{A}.\overrightarrow{B}, then the value ofA+B|\overrightarrow{A} + \overrightarrow{B}| is

A

(A2+B2+AB3)1/2\left( A^{2} + B^{2} + \frac{AB}{\sqrt{3}} \right)^{1/2}

B

A+BA + B

C

(A2+B2+3AB)1/2(A^{2} + B^{2} + \sqrt{3}AB)^{1/2}

D

(A2+B2+AB)1/2(A^{2} + B^{2} + AB)^{1/2}

Answer

(A2+B2+AB)1/2(A^{2} + B^{2} + AB)^{1/2}

Explanation

Solution

A×B=3(A.B)|\overset{\rightarrow}{A} \times \overset{\rightarrow}{B}| = \sqrt{3}(\overset{\rightarrow}{A}.\overset{\rightarrow}{B})

ABsinθ=3ABcosθAB\sin\theta = \sqrt{3}AB\cos\theta \Rightarrow tanθ=3\tan\theta = \sqrt{3}θ=60\theta = 60{^\circ}

Now R=A+B=A2+B2+2ABcosθ|\overset{\rightarrow}{R}| = |\overset{\rightarrow}{A} + \overset{\rightarrow}{B}| = \sqrt{A^{2} + B^{2} + 2AB\cos\theta}

=A2+B2+2AB(12)=(A2+B2+AB)1/2= \sqrt{A^{2} + B^{2} + 2AB\left( \frac{1}{2} \right)} = (A^{2} + B^{2} + AB)^{1/2}